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ABSTRACT

Many real-world programs take highly structured and complex files
as inputs. The automated testing of such programs is non-trivial. If
the test does not adhere to a specific file format, the program returns
a parser error. For symbolic execution-based whitebox fuzzing the
corresponding error handling code becomes a significant time sink.
Too much time is spent in the parser exploring too many paths lead-
ing to trivial parser errors. Naturally, the time is better spent explor-
ing the functional part of the program where failure with valid input
exposes deep and real bugs in the program.

In this paper, we suggest to leverage information about the file
format and data chunks of existing, valid files to swiftly carry the
exploration beyond the parser code. We call our approach Model-
based Whitebox Fuzzing (MoWF) because the file format input
model of blackbox fuzzers can be exploited as a constraint on the
vast input space to rule out most invalid inputs during path explo-
ration in symbolic execution. We evaluate on 13 vulnerabilities in
8 large program binaries with 6 separate file formats and found that
MoWF exposes all vulnerabilities while both, traditional whitebox
fuzzing and model-based blackbox fuzzing, expose only less than
half, respectively. Our experiments also demonstrate that MoWF
exposes 70% vulnerabilities without any seed inputs.

CCS Concepts:
eSoftware and its engineering — Software testing and debug-
ging; eSecurity and privacy — Vulnerability scanners;

Keywords: Symbolic Execution, Program Binaries

1. INTRODUCTION

Testing file-processing programs can be challenging. Even though
a structured file is stored as a vector of input bytes, it is often parsed
as a tree where data chunks contain fields and other data chunks.

Our key insight is that certain branches in a file-processing pro-
gram are exercised only depending on i) the presence of a specific
data chunk, ii) a specific value of a data field in a data chunk, or
iii) the integrity of the data chunks. Hence, an efficient test gener-
ation technique not only sets specific values of the fields but also
adds/removes complete chunks and establishes their integrity (e.g.,
checksum or size).
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Fuzzers help to test such file-processing programs. Model-based
blackbox fuzzers (MoBF) [3, 5] utilize input models to generate
valid random files. The input model specifies the format of the data
chunks and integrity constraints. However, while valid, the modi-
fication is still inherently random. Whitebox fuzzers (WF) employ
symbolic execution to explore program paths more systematically.
Given a valid file, they can generate the specific values for the
data fields quite comfortably. However, when it comes to adding
or deleting data chunks or enforcing integrity constraints, they are
bogged down by the large search space of invalid inputs [27].

Grammar-based whitebox fuzzers (GWF) can generate files that
are valid w.r.t. a context-free grammar [14]. Like WE, GWF com-
putes path constraints: logical formulas that are satisfied only by
new files exercising alternative paths. Unlike WF, these constraints
are converted into regular expressions such that a context-free con-
straint solver can generate an input that is accepted by both, the
grammar and the expression. However, the expression is much
weaker than the path constraint. Suppose, symbolic execution yields
the path constraint ¢ A (z < y). After conversion, the regular
expression cannot capture that arithmetic constraint. Moreover,
GWF cannot encode integrity constraints such as size-of, offset-of,
length-of and checksums. These integrity checks are very common
in several highly structured file formats like PNG, PDF and WAV.

In this work, we present Model-based Whitebox Fuzzing (MoWF),
an automated testing technique for industrial-size program bina-
ries that process structured inputs. MoWF is a marriage of model-
based blackbox fuzzing and whitebox fuzzing that generates valid
files efficiently that exercise critical target locations effectively. It
is a directed path exploration technique that prunes from the search
space those paths that are exercised by invalid, malformed inputs:
(1) MoWF uses information about the file format to explore those
branches that are exercised depending on the presence of specific
chunks. To this end, MoWF removes the referenced chunk or adds
a new valid chunk by instantiation from the input model or a pro-
cess we call data chunk transplantation — MoWF identifies the
set of input bytes corresponding to the required chunk in a donor
file and transplants them into the appropriate location of the receiv-
ing file. (i) MoWF employs selective symbolic execution [11] to
explore those branches that are exercised depending on specific val-
ues of the data fields. (iii) Lastly, MoWF establishes the integrity
of the generated files, repairing checksums and offsets.

Unlike MoBF, MoWF is directed and enumerates the specific
values of data fields more systematically. Unlike WF, MoWF does
not get bogged down by the large search space of invalid inputs or
require any seed inputs (cf. [13, 16]). Unlike GWF, MoWF main-
tains full path constraints so it has no impact on the soundness and
completeness of WE. Moreover, MoWF leverages a more expres-
sive yet simple input model to handle integrity constraints.
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Figure 1: The structure and the hex code of a PNG file. A data chunk is a section in the hex code embedding one piece of information
about the image. The hex code above the light-grey boxes identifies the data chunk type while the hex code above the dark-grey boxes

protects the correctness of the data chunk (via checksum).

The input model is used to generate valid files efficiently, en-
force integrity constraints, and facilitate the transplantation of data
chunks. Since it only prunes search space, the input model does
not need to be complete. On one hand, whitebox fuzzing eventu-
ally constructs all relevant (semi-) valid files by exploring paths that
are not pruned by the input model. On the other hand, transplan-
tating data chunks from donors maintains underspecified integrity
constraints, such as the concrete compression algorithm with which
the image data in a PNG file must be encoded. An input model
is constructed once and can be used across all future testing ses-
sions. It has been shown that input models can also be derived in
an automated fashion [19, 18, 17]. Each of our input models was
constructed manually in less than a day.

The two main challenges of Traditional Whitebox Fuzzing (TWF)
that we address are:

e Path Explosion. Parser code is often a large and very com-
plex part of a program. In practice, TWF gets bogged down
by an exponential number of paths in the parser that are ex-
ercised by invalid inputs [27].

Seed Dependendence. Most TWF approaches assume the
existence of a seed file that features all necessary data chunks
— it is only a matter of setting the correct values for the data
fields to expose an error. In practice, however, this may not
be the case. Data chunks may be missing or in the wrong
order. In other cases no seed files may be available at all.

The main contributions of MoWF are as follows.

e Pruning Invalid Paths. The input model allows to prune
most paths that are exercised by invalid inputs. As opposed
to TWE, MoWF is capable of negating those crucial branches
that are exercised only in the presence of certain data chunks
without having to iteratively construct the data chunk by ex-
ploring the parser code. All generated test inputs are valid
in that they adhere to the input model. Integrity constraints
are enforced. Given a 24h time budget, our MoWF tool ex-
posed all of thirteen vulnerabilities in our experimental sub-
jects while the TWF tool exposed only six.

Reduced Seed Dependence. The instantiation from the in-
put model allows to construct seed inputs from scratch. More-
over, given a seed input that is missing a data chunk to reach
a target location, MoWF allows to utilize other seed files as
donors, transplant the missing data chunk, and construct a
new seed input that is closer to the target location. In the
absence of a donor, the missing data chunk can be directly
instantiated from the input model. Out of the thirteen vul-
nerabilities in our experimental subjects our MoWF tool ex-
posed nine without any seed inputs.

Fuzzing tool. We implement our MoWF tool as an extension
of the TWF tool, HERCULES [22]. We compare our MoWF
tool not only to the HERCULES TWF but also to the PEACH
model-based blackbox fuzzer [3]. Given a 24h time budget,
our MoWF tool exposed all of 13 vulnerabilities in our ex-
perimental subjects while the both HERCULES and PEACH
tool exposed only six.
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Insights. Through our experiments we also gain insights about
the relative strengths of our technique MoWF, symbolic execu-
tion based traditional whitebox fuzzing (TWF), and model-based
blackbox fuzzing (MoBF) as in fuzzers like Peach/Spike [3, 5].
TWF performs well only if there exists a seed input that features
all necessary data chunks and only certain values for data fields
need to be set. MoBF performs well if the vulnerability is exposed
by putting boundary values for certain data fields, or by remov-
ing/adding empty data chunks. Deep vulnerabilities that require
specific values are best exposed by a symbolic execution-based ap-
proach. MoWF performs well even in the absence of seed inputs
and swiftly generates the specific values needed to expose even
deep vulnerabilities, while also gaining the capability to add and
remove complete data chunks as in MoBF.

2. OVERVIEW
2.1 Motivating Example

We motivate MoWF based on a real, serious vulnerability in a
library that is shipped with several browsers and media players.
LibPNG [24] is the official PNG reference library; it supports al-
most all PNG features, and has been extensively tested for over 20
years. The library is integrated into popular programs such as VLC
media player, Google Chrome web brower and Apple TV.

PNGs consist of four mandatory and fourteen optional types of
data chunks. For easy parsing and error detection the file format
requires to specify the size, type, and checksum of each data chunk
besides the actual data. The particular PNG file in Figure 1 hap-
pens to expose a memory access violation vulnerability (OSVDB-
95632) in VLC 2.0.7 [25] which uses LibPNG 1.5.14. To trigger
the bug, the image width defined in the IHDR chunk must take a
specific value (from 0x7FFFFFF2 to 0x7FFFFFFF) and the op-
tional tRNS chunk must exist. The tRNS chunk specifies alpha
values to control the transparency of pixels in the image.

Figure 1 partially shows structure of a file that exposes the bug.
The first eight bytes identify the file as PNG. The next four bytes
specify the size of the next data chunk (0xD = hex(13) bytes),
followed by four bytes identifying the type of the chunk as IHDR
(light-grey box). The next 13 bytes are data fields specifying im-
age width and height. This is followed by four bytes of checksum
protecting the correctness of the [HDR chunk (dark-grey box). The
remaining chunks are structured similarly. The image data in the
IDAT chunk is compressed using the DEFLATE compression algo-
rithm [1] and the end of the PNG file is indicated by IEND chunk.

Listing 1 shows the pertinent code in LibPNG. In each iteration,
png_read_info (lines 2-27) parses information about the cur-
rent chunk, like its size and type. Depending on the type it calls the
corresponding function to handle the current chunk and validate the
checksum. These handler functions parse a chunk’s data fields and
store their values for further image transformation and processing
steps. The chunks are parsed until the first IDAT chunk is reached
(lines 18-22). The file shown in Figure 1 passes all checks in the
parser and chunk-handling code and is therefore valid.
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Figure 2: Model-based Whitebox Fuzzing. Elements marked in grey are informed by the data model.

1 // read chunks’ info before first IDAT chunk
2 void png_read_info (png_structp ptr)

34

4 // read and check the PNG file signature

5 read_sig(f);

for (;;)

7

8 // get current chunk’s information
uint_32 length = read_chunk_header (ptr);
uint_32 chunk_name = ptr->chunk_name;
// mandatory chunks

12 if (chunk_name == png_TIHDR)

13 handle_TIHDR(ptr, length);

14 else if (chunk_name == png_IEND)
15 handle_TIEND (ptr, length);

16 else if (chunk_name == png_PLTE)
17 handle_PLTE (ptr, length);

18 else if (chunk_name == png_IDAT)
19 {

20 ptr->idat_size = length;

21 break;

22 }

23 // optional chunks

24 else if ...

25 else if (chunk_name == png_tRNS)
26 handle_tRNS (ptr, length);

else if ...

28}

29 }

// initialize row buffer for reading data from file
void png_read_start_row(png_structp ptr)

2 {

size_t buf_size;

buf_size = calculateBufSize (ptr);
ptr->row_buf = png_malloc(ptr, buf_size);
png_memset (ptr—->row_buf, 0, ptr->rowbytes);

J

Listing 1: Simplified parser code for data chunks. The code
is shown to ease the explanation; MoWF works directly with
program binaries.

When all other chunks have been parsed, LibPNG starts reading
pixel data from IDAT chunks. For each image row, LibPNG allo-
cates and initializes a buffer (lines 31-38 in png_read_start_row).
This is the faulty function. Specifically, the existence of tRNS
chunk and the improper validation of large image width leads to an
integer overflow while LibPNG is calculating buffer size for each
row (as simplified in calculateBufSize at line 35). Because of that
the allocated buffer is much smaller than required (line 36). As
a consequence, a buffer overflow occurs in png_memset causing
the program to crash. Notice that the third argument for the func-
tion call memset (ptr—rowbytes) is much larger than the size of the
buffer.
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2.2 Exposing Vulnerabilities

2.2.1 Traditional Whitebox Fuzzing

Given a benign PNG file having the required data chunks in
Figure 1 and the dangerous location in png_memset, a Whitebox
Fuzzing (TWF) tool can automatically generate an input that ex-
poses the vulnerability. However, suppose the benign file is miss-
ing the tRNS chunk, it will be an obstacle for TWF because it is
very unlikely that TWF can correctly synthesize the missing chunk
and keep the file valid. In fact, if there is no tRNS chunk, the true
branch of the IF-statement in line 25 of Listing 1 is not taken. Al-
though TWF can negate the branch and get a chunk with the name
“tRNS”, its size and content still adheres to specification of another
chunk. Where LibPNG expects the size, data, and checksum of the
new tRNS chunk, it only finds “random noise”. So, TWF over-
rides perfectly encoded image data only to spend substantial time
constructing a valid tRNS chunk in its place. Since IDAT chunk
is compulsory, TWF spends even more time navigating the space
of invalid inputs to construct another IDAT chunk until it finally
constructed a valid file that contains a valid tRNS chunk and all
compulsory chunks where all integrity constraints are satisfied.

2.2.2 Model-Based Whitebox Fuzzing

We propose Model-based Whitebox Fuzzing (MoWF) as a mar-
riage of model-based backbox fuzzing and whitebox fuzzing. The
model-based approach allows MoWF to cover the search space of
valid test inputs efficiently while the whitebox approach in detail
covers each subdomain more effectively. Both approaches are inte-
grated in a feedback loop that is described in Figure 2.

Setup. In this example, the user provides the buggy VLC binary,
a crash report, a set of existing benign PNG files (if available) and
a PNG model as shown in Listing 2. To implement MoWF, we
leverage a model-based blackbox fuzzer. The Peach framework
allows to specify a file format as Peach Pit [4]. It describes the
types of and relationships (size, count, offsets) between data chunks
and fields. It also supports fixups and transformers. Fixups allow
to repair related data fields, such as checksums. Transformers are
used for encoding, decoding and compression.

The PNG Peach Pit in Listing 2 first specifies the generic data
chunk (lines 1-14). PNG chunks all contain at least three data
fields, specifying the length, type, and checksum of the data chunk.
The other data chunks inherit these attributes (lines 15-31), fix the
chunk type as enumerable (IHDR, PLTE, tRNS, ..), and add fur-
ther data fields. The whole PNG file is specified last (lines 32-42).
It starts with a specific magic number (Signature for PNG files),
followed by a header chunk (IHDR) and upto 30,000 chunks (in
flexible order) before ending up with an IEND chunk.



| <DataModel name="Chunk">

2 <Number name="Length" size="32" >

3 <Relation type="size" of="Data" />
4 </Number>

5 <Block name="TypeData">

6 <Blob name="Type" length="4" />

7 <Blob name="Data" />

8 </Block>

9 <Number name="crc" size="32" >

<Fixup class="Crc32Fixup">
<Param name="ref" value="TypeData"/>
12 </Fixup>
</Number>
</DataModel>
<DataModel name="Chunk_IHDR" ref="Chunk">
<Block name="TypeData">
<String name="Type" value="IHDR" />
<Block name="Data">
<Number name="width" size="32" />
<Number name="height" size="32" />
</Block>
</Block>
</DataModel>

<DataModel name="Chunk_tRNS" ref="Chunk">
<Block name="TypeData">
<String name="Type" value="tRNS" />
<Blob name="Data" />
</Block>
</DataModel>
<DataModel name="PNG">
<Number name="Sig" value="89504e..." />
<Block name="IHDR" ref="Chunk_IHDR"/>
<Choice name="Chunks" maxOccurs="30000">
<Block name="PLTE" ref="Chunk_PLTE"/>

<Block name="tRNS" ref="Chunk_tRNS"/>
<Block name="IDAT" ref="Chunk_IDAT"/>
</Choice>
<Block name="IEND"
</DataModel>

ref="Chunk_IEND"/>

Listing 2: PNG input model as Peach Pit

Given the setup, to generate the crashing input in the motivating
example, MoWF manages to (i) insert a tRNS chunk into proper
position in a benign PNG file, (ii) explore the paths affected by
the existence of tRNS towards crash location, and (iii) generate
specific value for the image width data field in IHDR chunk. This
is achieved in four steps.

Step 1. Seed selection and file cracking. As shown in Figure 2,
MoWEF first selects as initial input that file which is closest to a
potential crash location. All other PNG files are considered donors,
disassembled by the file cracker and added to the fragment pool.
File fragments can be transplanted into input files as needed. If no
initial files are provided, MoWF instantiates the initial input from
the input model. Then, MoWF marks as symbolic all data fields
which the user specified as “modifiable”. Only modifieable data
fields are considered for the fuzzing. In this example, all data fields
(e.g., image width) are marked as modifiable except for the chunk’s
checksum and size. The resulting hybrid symbolic PNG file (i.e.,
some parts are symbolic where others are concrete) is then executed
concolically by a traditional whitebox fuzzer.

Step 2. Adding and removing data chunks. Certain branches in
a file-processing program are exercised only if a certain data chunk
is absent or present. To exercise these branches during path explo-
ration, MoWF removes the specific chunk or adds a new one. First,
in the execution of a given file f, MoWF identifies those crucial
if-statements (IFs) by their dependence on a data field in f of enu-
merable type. In Listing 1, the IFs in lines 11-26 can be considered
crucial while none of the those inside the handle_ x** func-
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tions are. In our experiments, we observe that such enumerables
do often uniquely identify a data chunk’s type. First, MoWF iden-
tifies the input bytes in f that influence the outcome of executed
branch predicates using classical taint analysis. In our example,
MoWF determines the relationship between the input bytes above
the grey boxes in Figure 1 and the IFs in Listing 1. Then, MoWF
learns the type of the referenced data field using the input model.
Finally, if the data field is of enumerable type and the IF is not al-
ready executed in both directions, then the IF is considered crucial
and MoWF removes the corresponding data chunk or adds a new
one through transplantation or instantiation from the input model.

Once MoWF identifies the type corresponding to the data chunk
being removed or added, the file stitcher coordinates the data chunk
transplantation. First, the stitcher searches the fragment pool for
candidate data chunks that are allowed (according to the input model)
to be put at the same level as the chosen chunk in the current seed
file f. Finally, the file sticher uses the input model to identify the
set of input bytes corresponding to each candidate data chunk in
the pool and transplants them into the appropriate location of the
receiving file f to generate a number of new seed files, one for
each chunk. For our example, in what follows we assume that the
candidate containing the tRNS chunk is chosen next.

Step 3. Changing data fields in inserted data chunk. Other
branches in a file-processing program are exercised only if spe-
cific values are set in the chunks’ data fields. In our example, the
vulnerability is exposed only when the image width is in a range
of certain values. To exercise these branches by finding the spe-
cific values is the strength of whitebox fuzzing. Selective symbolic
execution explores the local search space of semi-valid inputs start-
ing from the negated crucial branch. This local search is very ef-
ficient when compared to classical TWF. During exploration, any
integrity check is identified and ignored. The potentially invalid
files are later fixed during the file repair. Once the target location
is reached, the whitebox fuzzer checks the satisfiability of the con-
junction of path constraint and crash condition (inferred from the
given crash report or provided as output of static analysis tool).
If the conjunction is satisfiable, the whitebox fuzzer generates a
crashing input. Otherwise, it uses the unsatisfiable core to guide
the path exploration towards the crash location and does the check
again.

Step 4. Repeat. Data chunks can be nested in certain file for-
mats (such as WAV). Thus, MoWF uses the generated files as new
seeds to continue the next iteration starting from Step 1. From
the augmented seeds (initial seeds + new seeds), MoWF selects
a file which is closest to the crash location and moves to next steps.
MoWF executes selected file, identifies crucial if-statements, trans-
plants data chunks and continues path explorations.

Summary. In this motivating example, MoWF follows these four
steps. During concolic execution, it identifies line 25 (Listing 1)
as crucial if-statement. From the input model, the file stitcher in-
fers that a tRNS chunk is a candidate for transplantation and it is
allowed after PLTE and before the IDAT chunk. So, file stitcher
transplants a tRNS chunk from the fragment pool or directly in-
stantiates a minimal tRNS chunk from the input model and places
it right before IDAT chunk. As a result, the true branch of the if-
statement in line 25 is taken and the tRNS chunk is parsed before
doing further processing. Once the crash location is reached, the
image-width dependent crash condition is checked and a PNG file
is produced. The resulting file is still invalid because the new value
of image width invalidates the checksum of IHDR chunk. So, the
file repair tool fixes the checksum and the vulnerability is exposed.



3. MODEL-BASED WHITEBOX FUZZING

Algorithm 1 gives an overview of the procedure of directed model-
based whitebox fuzzing. It takes a program P, an input model M,
a set of target locations L in P, and seed inputs T'. The objective
of Algorithm 1 is to generate valid (crashing) files that exercise L.
If no target is provided, MoWF uses static analysis to identify dan-
gerous locations in the program, such as locations for potential null
pointer dereferences or divisions by zero (line 1-3). The algorithm
uses the provided test cases 71" as seed inputs for the test genera-
tion. However, if no seed file is provided, MoWF leverages the
input model M to instantiate a seed file (lines 4-7).

Algorithm 1 Model-Based Whitebox Fuzzing
Input: Program P, Input Model M

Input: Initial Test Suite 7', Targets L
Output: Augmented Test Suite 7"

1: if L = 0 then
2: L <+ IDENTIFYCRITICALLOCATIONS(P)
3: end if
4: if T = () then
5: t < INSTANTIATEAS VALIDINPUT(M)
6: T« {t}
7: end if
8: while timeout not exceeded do
9: Target location [ <~ CHOOSETARGET(L)
10: Input file ¢ +— CHOOSEBEST(T, 1)
11: Fragment Pool ® <— FILECRACKER(T, M)
12: Crucial IFS A < DETECTCRUCIALIFS(¢,1, P, M)
13: for all A € A do
14: Valid files T — FILESTITCHER(Z, A, &, M)
15: for all £, € T\ that negate A do
16: Hybrid file 5 <~ MARKSYMBOLICVARS(tx, M)
17: Files F' < PATHEXPLORATION(Ex, A, [, L, P)
18: for all f € F' do
19: Valid file f' < FILEREPAIR(f, M)
20: T+ TuUf
21: end for
22: end for
23: end for
24: end while
25: T+ T

The main loop of Algorithm 1 is shown in lines 8-24. First,
MoWF chooses the next target location {. If MoWF works in crash
reproduction mode, [ is the known crash location extracted from
the given crash report. Otherwise, [ is picked if its average distance
to all seed inputs in 7" is smallest. The distance between an input
t and a program location [ is specified in Definition 1. Second,
MoWF chooses the next seed file ¢ according to a search strategy
that seeks to generate the next input with a reduced distance to [
(line 10). The remaining seed files are sent to the file cracker to
construct the fragment pool @ in line 11. The fragement pool takes
a central role during data chunk transplantation.

Definition 1 (Input Distance to Location)

Given an input t, a program P and a program location [ in P.
Let Q(t) be the set of nodes in the Control Flow Graph (CFG) of
‘P that are exercised by ¢. The distance 6(t,1) from ¢ tol is the
number of nodes on the shortest path from any b € Q(t) tol.

Next, Algorithm 1 executes ¢t on P to determine crucial IFs A
(line 12). As specified in Definition 2, a crucial IF is evaluated in
different directions only depending on the type of the data chunks
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present in ¢. Our implementation leverages M to identify crucial
IFs by their dependence on a data field in ¢ of enumerable type. We
observed that such enumerables do often uniquely identify a data
chunk’s type. Note that we ignore executed IFs negating which
does not reduce the distance to the target location [.

Definition 2 (Crucial IF-statement)

Given input t for program P and a target location | in P, an if-
statement b in P is crucial if

1) the statement b is executed by t in P,

2) only one direction of b has been taken,

3) the negation of the branch condition at b reduces the distance
tol, and

4) let ©(b) be the branch condition at b; the outcome of (b)
depends on a field in t that specifies the chunk’s type.

For each crucial IF A thus identified, Algorithm 1 employs the
file stitcher to negate \’s branch condition (lines 13-14). For each
stitched file ¢, that successfully negates A, the algorithm executes
selective symbolic execution followed by file repair to fine-tune the
specific values of the data chunks and reduce the distance to [ (lines
15-20). More specifically, it marks all modifiable data fields in ¢
as symbolic and starts the directed path exploration (lines 16-17).
During path exploration, MoWF does not collect integrity checks
as branch constraints. For instance, a checksum check might not
allow to change a data field which would otherwise lead to reducing
the distance to L (cf. TaintScope [26]). Such integrity constraints
are repaired in line 19. Whenever a potential dangerous location in
L is reached, MoWF checks if the crash condition is satisfied and
generates a crashing test case accordingly.

A detailed discussion of the procedures in Algorithm 1 is found
in the following sections:

# Procedure Discussion
2 IDENTIFYCRITICALLOCATIONS  §3.1
5 INSTANTIATEASVALIDINPUT §3.2
10 CHOOSEBEST §3.1
11 FILECRACKER §3.2
12 DETECTCRUCIALIFS §3.2
14 FILESTITCHER §3.2
16 MARKSYMBOLICVARS §3.3
17 PATHEXPLORATION §3.3& §3.4
19 FILEREPAIR §3.2

3.1 Directed Model-Based Search

In order to generate inputs that expose vulnerabilities, MoWF
uses the initial seed inputs 7" to reduce the distance to the provided
or identified critical location [ until it is reached and the crash con-
dition is satisfied.

Critical Locations. If no targets L are provided to the algo-
rithm, MoWF identifies critical locations in the program P. A crit-
ical location is a program location that may expose a vulnerability
if exercised by an appropriate input. There are several methods to
identify such critical locations [13, 26]. In our implementation, we
use IDAPro [2] to dissamble the program binary P and perform
some lightweight analysis to identify instructions that conform to
the patterns shown in Listing 3. These patterns partially cover pro-
gram instructions that may trigger divide-by-zero and null-pointer
dereference vulnerabilities. Specifically, we focus on division and
memory move instructions taking registers or stack arguments as
operands. For those instructions, the crash condition is obvious.
Once a critical location is reached during concolic exploration, we
just check whether the value of register/stack argument is zero (in
case it is concrete) or can be zero (in case it is symbolic).



div  register

[ebp + argument_offset]

operand, [register]

operand, [ebp + argument_offset]
[register], operand
[ebp + argument_offset],

div
mov
mov
mov

mov operand

Listing 3: Crash instruction templates

Model-based Search. To generate input that reduces the dis-
tance to [, MoWF first chooses the seed input ¢ with the least dis-
tance to [ and then identifies the executed crucial 1Fs A (lines 10,
12 in Alg. 1). The task of the subsequent data chunk transplanta-
tion and instantiation will be to generate valid inputs that negate the
branch conditions of A. While other implementations are possible,
we decided to implement a hill climbing algorithm. Our imple-
mentation of CHOOSEBEST selects the input file ¢ € 7" such that
for selected location | € L we have that the distance from ¢ to [
is minimal. To detect crucial branches A, MoWF first determines,
using taint analysis, those input bytes in ¢ that may impact the out-
come of some b € (). We recall that (¢) is the set of nodes in
the CFG of program P which are exercised by ¢. In our implemen-
tation of DETECTCRUCIALIFS, we leverage those capabilities in a
symbolic execution tool, Hercules. Next, MoWF uses the CFG to
compute the number of nodes on the shortest path between b and
location [ € L. The negation of ¢(b) may reduce the distance to [
only if b is in static backward slice of [ and the branch b’ immedi-
ately following b does not have a smaller number of nodes on the
shortest path between b" and [. Lastly, MoWF uses M to deter-
mine the data field corresponding to the identified input bytes and
whether the data field specifies the chunk’s type. If all conditions
specified in Definition 2 are met, then b is marked as a crucial IF
and added to A.

3.2 Transplantation, Instantiation, and Repair

File Cracker. “File cracking” refers to the process of interpret-
ing valid files according to a provided input model (i.e., the Peach
Pit file). Given the input model M and a valid file t € T, the FILE-
CRACKER identifies all data chunks and their data fields in ¢. In
model-based blackbox fuzzers like Peach Fuzzer [3], the valid in-
put files are cracked and fuzzed independently. However, in MoWF
we crack all files and place their data components inside a frag-
ment pool. As aresult, we can consider all files (and even the input
model) as donors for data transplantation. By doing that, MoWF
can generate more (semi) valid files and improve coverage.

File Stitcher. Given a valid file ¢ and the crucial IF )\, the ob-

jective of FILESTITCHER is to negate () and reduce the distance
to [ by adding or removing chunks from ¢. First, the stitcher has to
determine the chunk c in ¢ that should be removed or before which
a different chunk should be added in order to negate ¢(X). Chunk
¢ was memorized previously when determining that the outcome of
) depends on the data field specifying c’s type. Second, the stitcher
generates a new file by removing ¢ from ¢ if allowed according to
M. Third, for each chunk type C that is allowed before c in t:
i) Transplantation. 1f there exists a chunk ¢’ of type C in the pool
®, copy the input bytes corresponding to ¢’ from the donor file to
the position before c in the receiving file ¢.
ii) Instantiation. Otherwise, use the specification of C in M as a
template to generate the bytes for ¢’ before c in t. All files thus
generated that actually negate A will be used for the subsequent
selective symbolic execution stage.

File Repair. Given a file f and the input model M, the file re-
pair tool re-establishes the integrity of the file. Our implementation
utilizes the fixup and transformers that can be specified in M in the
Peach framework.

548

3.3 Selective and Targeted Symbolic Execution

We reuse the targeted search strategy for symbolic exploration
implemented in Hercules [22]. Basically, to mitigate the path ex-
plosion problem, it enables fully symbolic reasoning only in some
selected modules of interest (i.e., executable binaries like .exe and
.dll files). The list of selected modules can be inferred from the
target module TM, which contains the selected target location, and
a so-called Module Dependency Graph (MDG). The MDG is con-
structed by running the program under test with benign inputs and
collecting the control transfer between program modules. Using the
constructed MDG, TM and all modules on paths from entry mod-
ule (main program) to TM are selected to explore in fully symbolic
execution mode.

The search strategy of Hercules is targeted in the sense that it
explores program paths towards a target location (critical locations
like crashing one) by pruning irrelevant paths. Moreover, Hercules
leverages the unsatisfiable core produced by a theory prover like Z3
[12] to guide the exploration.

3.4 Handling Incomplete Memory Modeling

The memory models of symbolic execution engines, like Her-
cules, KLEE or S2E [22, 10, 11], do not support memory allocation
with symbolic size. If a symbolic size is given, it is concretized be-
fore allocating heap memory. The concretization mechanism could
prevent us from exposing heap buffer overflow vulnerabilities. Sup-
pose in the motivating example the image width of the benign PNG
file is very small, say 1, and it is marked as symbolic. In the pro-
cessing code, LibPNG needs to allocate a heap buffer having sym-
bolic size that depends on width (and other symbolic variables).
When the buffer is allocated, width is bound in PC' by the con-
straint on concretized value for allocated buffer size.

Once the crash location (e.g., the instruction accessing the allo-
cated heap buffer) is reached, Hercules checks the satisfiablity of
the conjunction between the current path constraint PC' and the
crash condition C'C. Suppose that to satisfy the crash condition,
the image width must be large enough. For the current file with the
small image width, the crash condition C'C' could contradict the
path constraint PC'; PC' A CC is unsatisfiable. Usually, based on
the unsatisfiable core' of PC'AC'C, Hercules find a set of branches
that can be negated to explore neighboring paths along which the
crash condition C'C may be satisfiable. However, since width is al-
ready bound, there exists no alternative path along which the crash
condition C'C' can be satisfied.

In our extension of Hercules, we leverage recent advances in
maximal satisfication with Z3 (MaxSMT)[8, 12]. Using a whitelist,
our tool automatically marks certain clauses as “soft clauses”. The
Satisfiability Modulo Theory (SMT) Solver Z3 allows to generate
an assignment to the symbolic variables as solution that satisfies
the conjunction of all clauses — but not necessarily the soft clauses.

Specifically, in our case we set all constraints in C'C' as hard
clauses while specifying e.g., constraints due to memory allocation
in PC as soft clauses. To identify which constraints in PC' can be
soft, first we check whether the conjunction PC' A CC'is unsatis-
fiable. If so, we extract all symbolic variables in C'C'. Thereafter,
we iterate through all constraints in PC' and consider them as soft
constraints accordingly if they contain any symbolic variable from
CC. After all these steps, we get PC’, the updated PC, and we
send another query to MaxSMT solver to check the maximum sat-
isfiability of PC’ A CC. If PC’ A CC is satisfiable (by possibly

!Given an unsatisfiable Boolean propositional formula in conjunc-
tive normal form, a minimal subset of clauses whose conjunction
is still unsatisfiable is called an unsatisfiable core of the original
formula.



making one or more soft clauses in PC” as false) — we generate a
input file as the solution to the constraint. As an additional confir-
mation, we validate the generated file by feeding it to the program
binary and checking whether it crashes the program.

4. IMPLEMENTATION

Crucial IFS
Detector
MaxSMT
Interface
Pin tools
( ing)

(Finding critical
locations)

@ File Cracker
@ File Stitcher

File Repair

Hercules

Input Model Manipulation

Enhanced Whitebox Fuzzing

Figure 3: Components of our MoWF tool

Our MoWF tool is based on several third-party tools and li-
braries. We implemented our technique into the Hercules [22]
directed symbolic execution engine which itself leverages S2E [11]
and the 73 [12] satisfiability modulo theory constraint solver. We
also improved the accuracy of the taint analysis that is implemented
in Hercules. IDAPro [2] and the Intel Dynamic Binary Instru-
mentation Tool [20] (or PIN tool) were used for static anal-
ysis to find dangerous locations in the program code executing
which might crash the program (cf. §3.1). The PIN tools were
also used 1) for instruction profiling to generate the execution trace
and compute the distance of the current seed input to the dan-
gerous locations, and ii) for branch profiling to determine which
crucial branches are explored. The framework around the Peach
model-based blackbox fuzzer [3] allowed us to implement the in-
put model-based components such as File cracker, File Stitcher and
File Repair. In fact, the first was modified for our purposes and the
latter two were implemented from scratch, for instance, to support
data chunk transplantation.

S. EXPERIMENTAL EVALUATION

We evaluated our MoWF technique experimentally to answer the
following research questions.

e RQ.1 How many vulnerabilities are exposed by MoWF com-
pared to Traditional Whitebox Fuzzing (TWF)?

e RQ.2 How many vulnerabilities are exposed by MoWF com-
pared to Model-based Blackbox Fuzzing (MoBF)?

e RQ.3 How many vulnerabilities are exposed by MoWF if no
initial seed inputs are available?

Each technique was evaluated with a 24 hour time budget.

5.1 Experimental Setup
5.1.1 Subjects

We selected our subjects from a pool of well-known program bi-
naries of video players, document readers, music players, and im-
age editors — which take a variety of complex file formats. Since
Hercules serves as a base line technique, we also added all five
subjects on which Hercules was evaluated originally [22] (shown
with grey background). We also took the categories of vulnerabil-
ities into consideration. As shown in Table 1, we chose eight dis-
tinct real-world applications (some with different versions): Adobe
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Table 1: Subject Programs

Program Version Buggy module  Size Errors
Video Lan Client 2.0.7 libpng.dll 184 KB 1
Video Lan Client 2.0.3 libpng.dll 182KB 1
Libpng Test Program 1.5.4 libpng.dll 176 KB 1
XnView 1.98 XnView.exe 4.46MBO0+3
Adobe Reader 9.2 cooltype.dll  2.32M] 1
Windows MediaPlaye 9.0 quartz.dll 1.22M1 2+1
Real Player SP 1.0 realplayexe 60KB 1
MIDI Player 0.35 mamplayerex 336 KB 1
Orbital Viewer 1.04 ov.exe 538 KB 1
Total: 9+4

Reader (AR)?, Video Lan Client (VLC)®, Windows Media Player
(WMP), Real Player (RP)* and Music Animation Machine MIDI
Player (MP)*, XnView (XNV)®, LibPNG (LTP)’ and Orbital Viewer
(OV)®.

Table 1 shows not only the subjects and their versions but also
the target buggy modules and their respective sizes. In addition, it
features the number of known vulnerabilities that we sought to re-
produce. In one case (XnView), we started without any known vul-
nerabilities and looked for unknown ones. In other cases, although
we targeted the known vulnerabilities, we managed to discover new
ones. Indeed, our MoWF tool reproduced successfully all 9 known
errors and discovered 4 unknown errors — 3 in XnView and 1 in
Windows Media Player (See Section 5.2).

5.1.2  Input Modeling

To define input models of five file formats (PDF, PNG, MIDI,
FLV and ORB) from scratch, we utilized the modeling language of
the Peach model-based blackbox fuzzer. We augmented the input
model for WAV files which is provided freely by Peach Fuzzer. In
particular, we modeled one common image file (PNG), three audio
and video files (MIDI, WAV and FLV), one portable document file
(PDF) and one geometry file (ORB). In Table 2, we report the size
of the input models which are relatively small — ranging from 4 KB
to 14 KB. It took us less than a day to write each model for a file
format.

Table 2: Information on the Input Models

Format  Size Time spent #Files Average size
PDF 45KB 12 hours 10 200 KB
PNG 83KB 4 hours 10 55KB
MIDI 13.9KB 4 hours 10 20 KB
FLV 6.0 KB 4 hours 10 300 KB
ORB 6.0KB 8 hours 10 4 KB
WAV*  7.5KB 2 hours 10 260 KB

5.1.3 Initial Seed Files Selection

To select the initial seed files, we randomly downloaded 10 files
of the corresponding format from the Internet, except ORB and
PNG initial seed files. The ORB files were downloaded from soft-
ware vendor’s website’ while PNG files were downloaded from the
Schaik online test suite.'® The average size of seed files in each test
suite is shown in the fifth column of Table 2.

“https://get.adobe.com/reader/
3http://www.videolan.org/index.html
“http://www.real.com/sg
Shttp://www.musanim.com/player/
®http://www.xnview.com/en/
"http://www.libpng.org/pub/png/libpng.html
8http://www.orbitals.com/orb/ov.htm
*http://www.orbitals.com/orb/ov.htm
Ohttp://www.schaik.com/pngsuite



5.1.4 Infrastructure

We evaluated three tools, our MoWF tool, the Hercules Tradi-
tional Whitebox Fuzzer (TWF) and the Peach Model-Based Black-
box Fuzzer (MoBF). For the experiments, we used the community
version of Peach Fuzzer which is provided with its source code.'!
Both model-based techniques used the same input models. All sub-
ject programs were run on Windows XP 32-bit SP 3. For each
program, each tool was configured for a timeout after 24 hours of
execution. We conducted all experiments on a computer with a 3.6
GHz Intel Core i7-4790 CPU and 16 GB of RAM.

5.2 Results and Analysis

Table 3: The vulnerabilities exposed by our MoWF tool, the
Hercules TWEF, and the Peach MoBF. Vulnerabilities from
the Hercules benchmark are marked as grey.

Program Advisory ID Model Files | MoWF MoBF TWF
VLC 2.0.7 OSVDB-95632 PNG 10 v X X
VLC 2.0.3 CVE-2012-5470 PNG 10 v b 4 X
LTP 1.5.4 CVE-2011-3328 PNG 10 v X X
XNV 1.98 Unknown-1 PNG 10 4 v X
XNV 1.98 Unknown-2 PNG 10 v v X
XNV 1.98 Unknown-3 PNG 10 v v X
WMP 9.0 Unknown-4 WAV 10 v v X
WMP 9.0 CVE-2014-267! WAV 10 v X v
WMP 9.0 CVE-2010-071¢ MIDI 10 v X v
AR 9.2 CVE-2010-220«+ PDF 10 v X v
RP 1.0 CVE-2010-300C FLV 10 v X 4
MP 0.35 CVE-2011-050: MIDI 10 v v v
OV 1.04 CVE-2010-068¢ ORB 10 v v v

Table 3 shows the results in reproducing known vulnerabilities
and finding unknown ones of the three compared techniques. Over-
all, in the experiments our MoWF tool outperforms both Hercules
and Peach. While our MoWF tool successfully generated 13 crash-
inducing inputs, neither Hercules nor Peach can produce half
of them . Furthermore, our MoWF tool also found potential un-
known vulnerabilities in Windows Media Player and XnView. In-
deed, these vulnerabilities have previously not been reported at
MITRE'", OSVDB" or Exploit-DB.". In addition, the power of
our MoWF tool is also demonstrated by its ability to expose differ-
ent types of vulnerabilities including integer and buffer overflows,
null pointer dereference and divide-by-zero. In the following sec-
tions, we have an in-depth analysis to answer the three research
questions about the effectiveness and sensitivity of our approach.

RQ.1 Versus Traditional Whitebox Fuzzing

Our experiments confirm the observations that TWF is unlikely to
synthesize missing composite data chunks. As in OSVDB-95632,
CVE-2012-5470, CVE-2011-3328 and Unknown 1-4, Hercules
cannot produce crash inputs to expose the vulnerabilities because
they require the existence of optional composite data chunks. In
our experiments, Hercules gets stuck in synthesizing such re-
quired data chunks. In particular, the following requirments must
be met to expose the 7 vulnerabilities that are not in the Hercules
benchmark:

OSVDB-95632 (Buffer Overflow): It requires a PNG file with a
tRNS optional data chunk specifing either alpha values that are as-
sociated with palette entries (for indexed-colour images) or a single

http://community.peachfuzzer.com to download.
Phttp://cve.mitre.org/

Bhttp://osvdb.org/

“https://www.exploit-db.com/
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transparent colour (for greyscale and truecolour images). More-
over, the value of a data field (image width) in IHDR chunk (the
header chunk of PNG) must be able to trigger an integer overflow
in the LibPNG plugin in VLC 2.0.7.

CVE-2012-5470 (Buffer Overflow): It requires a PNG file with
a tEXt optional data chunk which stores text strings associated with
the image, such as an image description or copyright notice. Fur-
thermore, the length of the data chunk must be big enough to ex-
ceed the size of a heap buffer allocated for the image. However,
it cannot be so huge that it prevents LibPNG from successfully al-
locating a heap buffer that is supposed to store the data in tEXt
chunk.

CVE-2011-3328 (Divide-by-Zero): They require a PNG file
with a cHRM optional data chunk. The cHRM specifies chromatic-
ities of the red, green, and blue display primaries used in the image,
and the referenced white point. Second, some data fields in cHRM
chunk must have specific values to trigger a divide-by-zero bug in
the LibPNG library.

Unknown 1-3 (Memory Read Access Violation): They require
PNG files having optional data chunks (iTXt, zZTXt or iCCP ac-
cordingly) which have no content. That is, the chunks that specify
a size of zero followed by chunk name and checksum.

Unknown 4 (Divide-by-Zero): It requires a WAV file in which
the format chunk contains an optional extra composite data field
and one specific byte in the field is zero.

Unlike Hercules, our MoWF tool leverages the input models
to transplant required data chunks from other files in the initial test
suite or generate the chunks automatically from the input model.
Hence, our MoWF tool can successfully produce crash inputs as
witnesses for the seven vulnerabilites mentioned above.

Since our MoWF tool is an extension of Hercules, it can suc-
cessfully reproduce all six vulnerabilites in the Hercules bench-
mark. As we will see for RQ.3, our MoWF tool does not re-
quire seed inputs to reproduce three out of the six vulnerabilites
in the Hercules benchmark (CVE-2010-0718, CVE-2011-0502
and CVE-2010-0688) because of its capability to generate (semi-)
valid files directly from input models.

RQ?2. Versus Model-Based Blackbox Fuzzing

The Peach model-based blackbox fuzzer cannot expose half of the
vulnerabilities that our MoWF tool can expose (see Table 3). We
note that we conservatively assume that data chunk transplanation
and instantiation is available in Peach — even though it is not. It is
worth mentioning that supporting transplanation and instantiation
in Peach could be challenging. In fact, finding the correct chunk
to transplant and transplanting it to the correct location in the seed
input is subject to combinatorial explosion in an undirected fuzzing
technique like Peach. In constrast, MoWF uses information about
crucial IFs to direct the transplantation.

In the experiments, we simulated Peach’s capability to do data
chunk transplanation and instantiation by augmenting the set of
all 10 seed inputs where none contains the missing data chunk
with at least one seed input where we manually transplanted the
missing data chunk. In Table 3, we indicate that Peach (with
the simulated capability) can expose three vulnerabilities Unknown
1-3 since these only require the existence of empty-data optional
chunks.

However, for the remaining 10 vulnerabilities, the MoBF tool
Peach cannot successfully expose 7 of 10 vulnerabilities even
though we provide inputs with the required optional data chunks.
It is because of its limitation on generating specific values. The
reason lies with the inability of blackbox fuzzing to generate the
specific values for data fields that would expose deep vulnerabili-



ties. For example, given a 4-byte integer data field, the chance for
a blackbox fuzzer to randomly mutate and get a specific value X is
extremely small, just only 1/2%2. In contrast, symbolic execution-
based whitebox fuzzing is very good at finding such values.

Meanwhile, our MoWF tool is an enhancement of TWF (by
leveraging input models) and can tackle both the missing data chunk
problem and the limitation on generating specific input values. As
a result, it can successfully produce test cases to expose all of the
13 vulnerabilities.

RQ3. Sensitivity to the Initial Test Suite

Table 4: Vulnerabilities exposed by our MoWF tool if no initial
seed files are provided.

Model #Files MoWF
PNG
PNG
PNG
PNG
PNG
PNG
WAV
WAV
MIDI
PDF
FLV
MIDI
ORB

Program
VLC 2.0.7
VLC2.0.3
LTP 1.5.4
XNV 1.98
XNV 1.98
XNV 1.98
WMP 9.0
WMP 9.0
WMP 9.0
AR9.2
RP 1.0
MP 0.35
OV 1.04

Adyvisory ID
OSVDB-95632
CVE-2012-5470
CVE-2011-3328
Unknown-1
Unknown-2
Unknown-3
Unknown-4
CVE-2014-2671
CVE-2010-071¢
CVE-2010-2204
CVE-2010-300(
CVE-2011-0502
CVE-2010-068¢

AN
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For this experiment, we run our MoWF tool with no initial seed
inputs as shown in Table 4. By leveraging input models of PNG,
MIDI and ORB, for each file format our MoWF automatically gen-
erates one minimal seed file. In particular, a minimal PNG file is
an 1x1 image having four mandatory chunks — IHDR, PLTE, IDAT
and IEND. In case of MIDI, it is a single track audio file with one
header chunk (MThd) and one audio track chunk (MTrk). The min-
imal ORB file contains all required properties for rendering an or-
bital object. Once the files are generated, we run our MoWF tool
on all subjects listed in Table 4.

The experiments show that with the minimal files, our MoWF
tool can expose 9 of 13 vulnerabilities (which can be revealed by
PNG, MIDI and ORB files) as reported in Table 3. It means that
our MoWF tool exposes 70% vulnerabilites without any provided
seed inputs providing evidence that MoWF technique reduces the
dependence of TWF on selected seed inputs.

MOoWF does not succeed in exposing the vulnerabilities in 4 of
13 vulnerabilities because they require WAV, FLV and PDF files as
inputs. However, our models for these file formats are still coarse.
Although they are enough to allow MoWF to work with given test
suites, they need to be more complete to support directly generating
(semi-) valid files. Since these file formats are complex, on one
hand we can spend more time to read and fully understand their
specifications in order to augment the input models. On the other
hand, we can reuse exhaustive models written by software vendors
or the owners of file formats. For instance, according to a post at
the official Adobe Blog," developers at Adobe System wrote their
model for PDF file (which was a proprietary format controlled by
Adobe until 2008) and used Peach Fuzzer to fuzz their most popular
software — Adobe Reader. Given such (partially) complete input
models, our MoWF approach would complement MoBF tool like
Peach Fuzzer to maximize the utility of these models and hence
expose more vulnerabilities.

Bhttps://blogs.adobe.com/security/tag/fuzzing
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6. THREATS TO VALIDITY

The main threat to external validity is the generality of our re-
sults. MoWF has been developed for real-world program binaries
that take complex program inputs. We choose a variety of well-
known programs from different domains where specifications of
the input models are available. While for proprietary applications
such format specifications might not be available, we believe that
grammar inference techniques can be a powerful tool to automat-
ically derive the input model. Half of the vulnerabilities have al-
ready been picked in earlier work [22]. To showcase the effective-
ness of MOWE, the other half has been chosen such that an optional
data chunk is required to expose the vulnerability.'®

The main threat to internal validity is selection bias during the
seed selection (see Table 2). We chose the seed inputs either ran-
domly from a benchmark or from the internet. Moreover, our ex-
periments confirm the reduced dependence on the available seed
inputs.

The main threat to construct validity is the correctness of our im-
plementation. However, our tool is an extension of both Hercules
and Peach, the two baselines for our evaluation. So, our tool inher-
its the incorrectness of the baseline.

7. RELATED WORK

The first automated testing technique for file-processing programs
Fuzz was implemented in 1990 by Miller et al. [21] to understand
the reliability of UNIX tools. Since then fuzzing has evolved sub-
stantially, become widely adopted into practice, and exposed seri-
ous vulnerabilities in many important software programs. A fuzzer
quickly generates an excessive amount of program inputs in an at-
tempt to make it crash. Today, most compilers support to inject
so-called sanitizers during the compilation of the program under
test. A sanitizer is an automated oracle that can expose more intri-
cate but serious software bugs, such as buffer overflows, data races,
and memory errors. Together, fuzzers and the sanitizers allow the
automated testing and exposing of deep and intricate software bugs
in programs of any scale. Security sensitive programs are hardened
in a feedback loop where a program is first sanitized, then fuzzed,
the exposed errors fixed, the patched version is fuzzed again, and
SO on.

We can distinguish the more efficient blackbox techniques that
generate test inputs without the analysis of the program source code
and the more effective whitebox techniques that leverage program
analysis to expose bugs hiding deeper in the source code of the
program.

Blackbox Fuzzing [3, 5, 6, 7, 21]. Programs processing simply
structured plain text input can be fuzzed by random input gener-
ators, like Fuzz [21]. In fact, random test generation can be a
very efficient test generation technique [9]. However, for programs
processing highly structured input files, like a PDF Reader, most
random files are rejected as invalid. Hence, model-based blackbox
fuzzing (MoBF) tools utilize a user-given input model to generate
valid random files [3, 5, 6, 7]. However, due to the random choice
of values for data fields, MoBF may still be ineffective in expos-
ing more deeper errors in the program’s functionality. Systematic
path exploration to enumerate the specific values of a data field is
significantly more effective.

Traditional Whitebox Fuzzing [15, 22, 13, 26] seeks to explore
alternative paths in the program by substituting input bytes in a
given file with other values. Taint-based whitebox fuzzing [13, 26]
identifies those “hot bytes” in the input file that impact the value
of a dangerous location, like a divisor or system call. Fuzzing the

16See RQ.1. in Section 5.2.



hot bytes can reveal errors more quickly. More effective symbolic
execution-based whitebox fuzzers substitute input bytes that impact
the outcome of a branch with symbolic variables and employ sym-
bolic execution [15, 22] to negate those branches. Checksum-aware
whitebox fuzzing [26] attempts to identify checksum checks and
circumvent them during whitebox fuzzing. The check is identified
as the first i f-statement s that depends on many input bytes and
is circumvented by removing s from the program. To repair the
generated malformed files, the branch-condition of s is computed
in terms of the identified input bytes made symbolic. However,
checksum-aware whitebox fuzzing cannot solve any other integrity
constraints, like chunk size or offset. Throughout the paper, we
have shown the limitations of traditional whitebox fuzzing, such as
being bogged down by the large search space of invalid inputs and
the dependence in seed files.

Grammar-based Whitebox Fuzzing (GWF) [14] generates inputs
that are valid w.r.t. a context-free grammar G. We use the example
in Listing 4 for illustration.

~
int i;

char+ input;

char getNextToken () {

return input [i++];

bool isSorted() {

1

2

3

4
50}
6

7 int prev_digit = 0;
8

9

if (’/{’ == getNextToken()) {
do {

10 char token = getNextToken();
11 if (’,’ == token) continue;
12 if ('}’ == token) return true;
13 int digit = asInt (token);
14 if (prev_digit > digit) return false;
15 prev_digit = digit;
16 } while (true);

17 }
return false;

19 }

Listing 4: isSorted() returns true if the input is a sorted list of
single digit numbers

The context-free grammar G may be written as

G — {Numbers} (1)
(€]
3

“)

Numbers — Numbers, Numbers
Numbers — Digit
Digit - 0]1]2|3|4]|5]6]7]8]9

which encodes that valid inputs start with an open curly bracket
followed by a comma-separated list of (at least one) digits and a
closing curly bracket. GWF encodes a path condition as regular
expression. Forinput {1, 2}, GWF yields the following constraint
R to explore the alternative branch where the input does not end in
a curly bracket:

token; = { 5)
A tokeng = Digit (6)
A tokeng =, 7
A tokeny = Digit ®)
A tokens # } )

where Digit is a symbolic variable. Using a context-free constraint
solver, it is possible to derive an array with three digits that is ac-
cepted by both G and R (e.g., {0, 0, 0}). However, since the reg-
ular expression cannot express the arithmetic relationship between
tokenz and tokeny (i.e., 1 < 2), a completely different path might
be exercised. This renders GWF both unsound as well as incom-
plete. In contrast, MoWF maintains path conditions as SMT for-
mulas and merely prunes paths that are exercised by inputs that are
invalid w.r.t. the input model. Moreover, the context-free language
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which encodes the file format cannot express integrity constraints
such as the checksum or the size of a data chunk. Functions com-
puted over the data in a data field, such as a compression algorithm,
cannot be expressed either. Our input models allow to specify in-
tegrity constraints and compression algorithms through the concept
of Fixups and Transformers.

Hybrid Fuzzing. Driller [23] combines the effectiveness of white-
box and the efficiency of blackbox fuzzing. After running the black-
box fuzzer for some time, the whitebox fuzzer is run on the most
promising seed files produced by the blackbox fuzzer. In contrast to
MoWEFE, Driller does not leverage information from an input model
to generate more valid files. Driller does not primarily target such
programs that process highly structured inputs. In this respect, our
approache is orthogonal to Driller. Driller can benefit from MoWF
when testing programs processing highly structured inputs.

8. DISCUSSION

We introduced Model-based Whitebox Fuzzing (MoWF) as an
automated testing technique for program binaries that process highly
structured inputs. We have observed that certain branches in a file-
processing program are exercised only depending on i) the presence
of a specific data chunk, ii) a specific value of a data field in a data
chunk, or iii) the integrity of the data chunks. Hence, we extend
HERCULES an existing traditional whitebox fuzzing technique not
only to set specific values of the fields but also to add/remove com-
plete chunks and re-establish their integrity during fuzzing.

Pruning Invalid Paths. We discussed several approaches to prune
the vast search space of invalid inputs, including integrity enforce-
ment and data chunk transplantation and instantiation. As opposed
to Traditional Whitebox Fuzzing (TWF), MoWF is capable of negat-
ing those branches that are exercised only in the presence of certain
data chunks without having to iteratively construct the data chunk
by exploring the parser code. All generated test inputs are valid in
that they adhere to the input model. Integrity constraints are en-
forced. Given a 24hour time budget, our MoWF tool exposed all of
thirteen vulnerabilities in our subject programs while the TWF tool
exposed only six.

Reduced Seed Dependence. We also investigated the dependence
of MoWF on the provided initial seed files. MoWF can instantiate
the initial seed files directly from the provided input model. More-
over, given a seed input that is missing a data chunk to reach a target
location, MoWF allows to utilize other seed files as donors, trans-
plant the missing data chunk, and construct a new seed input that
is closer to the target location. In the absence of a donor, the miss-
ing data chunk can be directly instantiated from the input model.
Out of the thirteen vulnerabilities in our experimental subjects our
MoWEF tool exposed nine without any seed inputs.

In summary, MoWF is a promising fuzzing technique for pro-
gram binaries that process highly structured input. It is particularly
helpful when no initial seed files are available that contain the re-
quired optional data chunks. Given the same time budget, MoOWF
can generate more valid test inputs which aids in exposing vulner-
abilities that could not be exposed otherwise.
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