
MISRA C++:2008

Guidelines
for the use
of the
C++ language
in critical
systems

June 2008

The Motor Industry Software Reliability Association

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

First published June 2008

MIRA Limited
Watling Street
Nuneaton
Warwickshire CV10 0TU
UK

www.misra-cpp.com

© MIRA Limited, 2008.

“MISRA”, “MISRA C” and the triangle logo are registered trademarks of MIRA Limited, held on
behalf of the MISRA Consortium.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical or photocopying, recording or
otherwise without the prior written permission of the Publisher.

ISBN 978-1-906400-03-3 paperback
ISBN 978-1-906400-04-0 PDF

Printed by Hobbs the Printers Ltd

British Library Cataloguing in Publication Data.
A catalogue record for this book is available from the British Library

This copy of MISRA C++:2008 - Guidelines for the use of the C++ language in critical
systems is issued to He Yulin of Insigma Rail Transport. Engineering Co. at No.9 Hangda
Road, Hangzhou, Zhejiang, 310007.

The file must not be altered in any way. No permission is given for distribution of this file.
This includes but is not exclusively limited to making the copy available to others by email,
placing it on a server for access by intra- or inter-net, or by printing and distributing
hardcopies. Any such use constitutes an infringement of copyright.

MISRA gives no guarantees about the accuracy of the information contained in this PDF
version of the Guidelines. The published paper document should be taken as authoritative.

Information is available from the MISRA web site on how to purchase printed copies of the
document.

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

i

MISRA C++:2008

Guidelines
for the use
of the
C++ language
in critical
systems

June 2008

The Motor Industry Software Reliability Association

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

ii

MISRA Mission Statement: To provide assistance to the automotive industry in the application
and creation within vehicle systems of safe and reliable software.

MISRA, The Motor Industry Software Reliability Association, is a collaboration between vehicle
manufacturers, component suppliers and engineering consultancies which seeks to promote best
practice in developing safety-related electronic systems in road vehicles and other embedded
systems. To this end MISRA publishes documents that provide accessible information for engineers
and management, and holds events to permit the exchange of experiences between practitioners.

www.misra.org.uk

Disclaimer
Adherence to the requirements of this document does not in itself ensure error-free robust

software or guarantee portability and re-use.
Compliance with the requirements of this document, or any other standard, does not of itself

confer immunity from legal obligations.

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

iii

“C makes it easy to shoot yourself in the foot; C++ makes it harder, but when you do it blows your
whole leg off.” — Bjarne Stroustrup
Few could have predicted the effect that MISRA C would have within embedded systems
engineering. Since its launch in 1998, it has become the dominant coding standard used for the
development of critical systems with the C programming language.
Given this success, the fact that C++ is now being used within critical systems (e.g. the Joint Strike
Fighter, jet-engine controllers and medical systems), and that there is currently no universally
accepted set of guidelines for its use in these systems, MISRA committed itself to the development
of a similar set of guidelines for C++. To that end, the MISRA C++ Working Group was established
towards the end of September 2005. Its objectives were to:

Produce, using techniques similar to those within MISRA C, a C++ subset suitable for use •	
in critical systems;
Gather existing C++ guidelines from many diverse sources into a single repository;•	
Add	new	guidance	so	as	to	significantly	enhance	the	state-of-the-art;•	
Establish a single, generic set of guidelines for the use of C++ in critical systems;•	
Produce guidelines that are understandable to the majority of programmers.•	

The work to produce the guidelines made a rapid start, and was greatly assisted by the many in-
house coding standards that were made available to the group — thanks are due to all those who
contributed. These, and the guidelines available from other sources, formed a solid foundation on
which to base many rules.
Focus then moved on to the production of guidelines for Templates, Inheritance and Exception
Handling,	 with	 these	 areas	 being	 specifically	 targeted	 as	 the	 existing	 state-of-the-art	 did	 not	
provide adequate coverage. The issues associated with Unnecessary Constructs were also selected
for investigation.
This document contains the results of these activities. The group hopes that MISRA C++ will go
on to become as successful and widely-adopted as MISRA C.
Finally, I would like to give my personal thanks to all of those who sat on the Working Group.
I have, as always, learnt a lot from them during the development process. I just hope I have
managed to put enough back into the project to repay part of the debt I owe them all.

Chris Tapp, BSc (Hons), MIEE
MISRA C++ Chairman
15 April 2008

Foreword

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

iv

The	 MISRA	 consortium	 would	 like	 to	 thank	 the	 following	 individuals	 for	 their	 significant	
contribution to the writing of this document:
Richard Corden Programming Research Ltd
Mike Hennell LDRA Ltd
Derek Jones Knowledge Software Ltd
Keith Longmore Lotus Cars Ltd
Clive Pygott QinetiQ Ltd
Chris Tapp Keylevel Consultants Ltd

The MISRA consortium also wishes to acknowledge contributions from the following individuals
during the development and review process:
Dave Banham Al Grant Frank Martinez John Ridgway
Martin Beeby Christopher Hall Jason Masters Iris Rödder
Fergus Bolger Frank Haug Jürgen Mottok Walter Schilling
Martin Bonner Stefan Heinzmann Chris Mycock Ben Smith
Michael R. Bossert Robert Hooper Tadanori Nakagawa Andreas Stangl
Antonio Cavallo Elmar Hufschmid Hans Odeberg Toshihiro Tajima
Ian Chalinder Paul Jeary Charles Osborn David Ward
Kwok Chan Josef Kollar Rob Pearce Andrew Warren
Valéry Creux Albert Kreitmeyr PremAnand M Rao Andrew Watson
David Crocker Fred Long Derek Reinhardt Ashley Wise
Thomas M. Galla Andreas Ludwig David Reversat

Acknowledgements

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

v

Contents
1. Background ... 1

1.1 The use of C++ in critical systems .. 1
1.2 Language insecurities and the C++ language .. 1

1.2.1 The developer makes mistakes ... 1
1.2.2 The developer misunderstands the language .. 2
1.2.3 The compiler does not do what the developer expects ... 2
1.2.4 The compiler contains errors .. 2
1.2.5 Run-time errors .. 2

1.3 The use of C++ for safety-related systems .. 2
1.4 C++ standardization ... 3

2. The vision ... 4
2.1 Rationale for the production of MISRA C++ .. 4
2.2 Objectives of MISRA C++ .. 4

3. Scope .. 5
3.1 Base language issues .. 5
3.2 Issues not addressed ... 5
3.3 Applicability .. 5
3.4 Prerequisite knowledge .. 5
3.5 Library issues ... 5
3.6 Auto-generated code issues ... 6

4. Using MISRA C++ ... 7
4.1 The software engineering context .. 7
4.2 The programming language and coding context ... 7

4.2.1 Training .. 7
4.2.2 Style guide .. 8
4.2.3 Tool selection and validation .. 8
4.2.4 Source complexity metrics ... 9
4.2.5 Test coverage .. 9

4.3 Adopting the subset ... 10
4.3.1 Compliance matrix ... 10
4.3.2 Deviation procedure ... 10
4.3.3 Formalization within quality system .. 12
4.3.4 Introducing the subset .. 12

4.4 Claiming compliance ... 12
4.5 Continuous improvement ... 12

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

vi

Contents (continued)

5. Introduction to the rules .. 13
5.1	 Rule	classification .. 13

5.1.1 Required rules .. 13
5.1.2 Advisory rules .. 13
5.1.3 Document rules .. 13

5.2 Organization of rules ... 13
5.3 Exceptions to the rules ... 13
5.4 Redundancy in the rules ... 14
5.5 Presentation of rules .. 14
5.6 Understanding the issue references ... 15
5.7 Scope of rules .. 16

6. Rules ... 17
6.0 Language independent issues .. 17

6.0.1 Unnecessary constructs .. 17
6.0.2 Storage .. 25
6.0.3 Runtime failures ... 26
6.0.4 Arithmetic ... 29

6.1 General ... 30
6.1.0 Language .. 30

6.2 Lexical conventions ... 31
6.2.2 Character sets ... 31
6.2.3 Trigraph sequences ... 31
6.2.5 Alternative tokens .. 32
6.2.7 Comments ... 32
6.2.10	 Identifiers .. 34
6.2.13 Literals .. 37

6.3 Basic concepts ... 40
6.3.1	 	 Declarations	and	definitions ... 40
6.3.2	 	 One	Definition	Rule ... 41
6.3.3 Declarative regions and scope .. 44
6.3.4 Name lookup .. 45
6.3.9 Types .. 46

6.4 Standard conversions ... 48
6.4.5 Integral promotions .. 48
6.4.10 Pointer conversions .. 50

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

vii

Contents (continued)

6.5 Expressions .. 51
6.5.0 General ... 51
6.5.2	 	 Postfix	expressions ... 76
6.5.3 Unary expressions .. 83
6.5.8 Shift operators .. 86
6.5.14 Logical AND operator .. 86
6.5.17 Assignment operators ... 87
6.5.18 Comma operator ... 87
6.5.19 Constant expressions .. 88

6.6 Statements .. 89
6.6.2 Expression statement .. 89
6.6.3 Compound statement .. 90
6.6.4 Selection statements ... 91
6.6.5 Iteration statements .. 97
6.6.6 Jump statements ... 100

6.7 Declarations ... 104
6.7.1	 	 Specifiers .. 104
6.7.2 Enumeration declarations ... 106
6.7.3 Namespaces .. 106
6.7.4 The asm declaration ..111
6.7.5	 	 Linkage	specifications ...112

6.8 Declarators ..114
6.8.0 General ..114
6.8.3 Meaning of declarators ..115
6.8.4	 	 Function	definitions ...116
6.8.5 Initializers ..118

6.9 Classes ... 120
6.9.3 Member functions .. 120
6.9.5 Unions .. 123
6.9.6	 	 Bit-fields ... 123

6.10 Derived classes .. 125
6.10.1 Multiple base classes .. 125
6.10.2 Member name lookup ... 126
6.10.3 Virtual functions ... 127

6.11 Member access control .. 131
6.11.0 General ... 131

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

viii

Contents (continued)

6.12 Special member functions .. 131
6.12.1 Constructors ... 131
6.12.8 Copying class objects ... 134

6.14 Templates ... 136
6.14.5 Template declarations ... 136
6.14.6 Name resolution ... 139
6.14.7 Template instantiation and specialization ... 141
6.14.8 Function template specialization .. 143

6.15 Exception handling .. 144
6.15.0 General ... 144
6.15.1 Throwing an exception ... 147
6.15.3 Handling an exception .. 150
6.15.4	 Exception	specifications ... 157
6.15.5 Special functions .. 157

6.16 Preprocessing directives .. 159
6.16.0 General ... 159
6.16.1 Conditional inclusion ... 163
6.16.2	 Source	file	inclusion ... 164
6.16.3 Macro replacement ... 166
6.16.6 Pragma directive ... 167

6.17 Library introduction ... 167
6.17.0 General ... 167

6.18 Language support library ... 169
6.18.0 General ... 169
6.18.2 Implementation properties .. 171
6.18.4 Dynamic memory management ... 171
6.18.7 Other runtime support .. 172

6.19 Diagnostics library ... 172
6.19.3 Error numbers ... 172

6.27 Input/output library .. 173
6.27.0 General ... 173

7. References .. 174

Appendix A: Summary of rules ... 176

Appendix B: C++ vulnerabilities ... 190

Appendix C: Glossary .. 205

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

1

Background1.

The use of C++ in critical systems1.1
The C++ programming language [1] is growing in importance and use for critical systems. This is
due	largely	to	the	inherent	language	flexibility,	the	extent	of	support	and	its	potential	for	portability	
across	a	wide	range	of	hardware.	Specific	reasons	for	its	use	include:

C++ gives good support for the high-speed, low-level, input/output operations, which are •	
essential to many embedded systems.
The increased complexity of applications makes the use of a high-level language more •	
appropriate than assembly language.
C++ compilers can generate code with similar size and RAM requirements to those of C.•	
C++ enables object-oriented design methods to be used.•	
A growth in portability requirements caused by competitive pressures to reduce hardware •	
costs by porting software to new, and/or lower cost, processors at any stage in a project
lifecycle.
A growth in the use of automatically-generated C++ code from modelling packages.•	
Increasing interest in open systems and hosted environments for which C++ is a possible •	
language selection.

Language insecurities and the C++ language1.2
No	programming	language	can	guarantee	that	the	final	executable	code	will	behave	exactly	as	the	
programmer intended. There are a number of problems that can arise with any language, and these
are broadly categorized below. Examples are given to illustrate insecurities in the C++ language.

The developer makes mistakes1.2.1

Developers make errors, which can be as simple as mis-typing a variable name, or might involve
something more complicated such as misunderstanding an algorithm. The programming language
has a bearing on this type of error. Firstly, the style and expressiveness of the language can assist or
hinder the programmer in thinking clearly about the algorithm. Secondly, the language can make
it easy or hard for typing mistakes to turn one valid construct into another valid (but unintended)
construct. Thirdly, the compiler may or may not detect errors when they are made.
Firstly, in terms of style and expressiveness C++ can be used to write well laid out, structured
and expressive code. It can also be used to write perverse and extremely hard-to-understand code.
Clearly the latter is not acceptable in a safety-related system.
Secondly, the syntax of C++ is such that it is relatively easy to make typing mistakes that lead
to perfectly valid code. For example, it is all too easy to type “=” (assignment) instead of “==”
(logical comparison) and the result is nearly always valid (but wrong), while an extra semi-colon
on the end of an if statement can completely change the logic of the code.
Thirdly, the philosophy of C++ is to assume that the developers know what they are doing, which
can mean that if errors are made they are allowed to pass unnoticed by the compiler. An area in
which C++ is particularly weak (though better than C) in this respect is that of “type checking”.
C++	will	not	object,	for	example,	if	the	programmer	tries	to	store	a	floating-point	number	in	an	

1. Background

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

2

object of type bool. Most such mismatches are simply forced to become compatible. If C++ is
presented	with	a	square	peg	and	a	round	hole	it	does	not	complain,	but	makes	them	fit!

The developer misunderstands the language1.2.2

Developers can misunderstand the effect of constructs in a language. Some languages are more
open to such misunderstandings than others.
There are a number of areas of the C++ language that are prone to developer-introduced errors.
For	example,	the	rules	for	operator	precedence	are	well	defined	but	complex,	and	it	is	easy	for	a	
developer to make incorrect assumptions in an expression.

The compiler does not do what the developer expects1.2.3

If	a	 language	has	features	that	are	not	completely	defined,	or	are	ambiguous,	 then	a	developer	
can assume one thing about the meaning of a construct, while the compiler may interpret it quite
differently.
There	are	many	areas	of	 the	C++	 language	 that	 are	not	 completely	defined,	 and	 so	behaviour	
may vary from one compiler to another. In some cases the behaviour can vary even within a
single compiler, depending on the context. ISO/IEC 14882:2003 [1] contains numerous issues
that may vary in this way. However, it does not list them in the way that the C standard does in its
“Portability issues” annex. To aid in ensuring coverage of the issues and to allow traceability, they
have been extracted and are shown in Appendix B.

The compiler contains errors1.2.4

A language compiler (and associated linker etc.) is itself a software tool. Compilers may not
always compile code correctly. They may, for example, not comply with the language standard in
certain situations, or they may simply contain “bugs”.
Because there are aspects of the C++ language that are hard to understand, compiler writers have
been known to misinterpret the standard and implement it incorrectly. Some areas of the language
are more prone to this than others. In addition, compiler writers sometimes consciously choose to
vary from the standard.

Run-time errors1.2.5

A somewhat different language issue arises with code that has compiled correctly, but due to the
particular data supplied to it, causes errors during the execution of the code. Languages can build
run-time checks into the executable code to detect many such errors and take appropriate action.
C++ is generally poor in providing run-time checking. This is one of the reasons why the code
generated	by	C++	tends	to	be	small	and	efficient,	but	there	is	a	penalty	to	pay	in	terms	of	detecting	
errors during execution. C++ compilers generally do not provide run-time checking for such
common	problems	as	arithmetic	exceptions	(e.g.	divide	by	zero),	overflow,	validity	of	addresses	
for pointers, or array bound errors.

The use of C++ for safety-related systems1.3
It should be clear from Section 1.2 that great care needs to be exercised when using C++ within
safety-related	systems.	Because	of	 the	kinds	of	 issues	 identified	above,	various	concerns	have	

1. Background (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

3

been expressed about the use of C++ in safety-related systems. Certainly, it is clear that the full
C++ language should not be used for programming safety-related systems.
However, in its favour, C++ is mature and consequently well-analysed and tried in practice.
Therefore	some	of	its	deficiencies	are	known	and	understood.	Additionally,	there	is	a	large	amount	
of tool support available commercially which can be used to statically check the C++ source code
and warn the developer of the presence of many of the problematic aspects of the language.
If, for practical reasons, it is necessary to use C++ on a safety-related system, then the use of
the language must be constrained to avoid, as far as is practicable, those aspects of the language
which do give rise to concerns. This document provides one such set of constraints (often referred
to as a “language subset”).
Note that assembly language is no more suitable for safety-related systems than C++ and, in some
respects, is worse. Use of assembly language in safety-related systems is not recommended, and
generally if it is to be used then it needs to be subject to stringent constraints.

C++ standardization1.4
The	 standard	 used	 for	 this	 document	 is	 the	 C++	 programming	 language	 as	 defined	 by	 ISO/
IEC 14882:2003 [1].

1. Background (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

4

The vision2.

Rationale for the production of MISRA C++2.1
The MISRA consortium published its Development Guidelines for Vehicle Based Software [2]
in 1994, which describes the full set of measures that should be used in safety-related embedded
software development for vehicle systems. In particular, the choices of language, compiler and
language features to be used, in relationship with safety integrity level (SIL), are recognized to
be of major importance. Section 3.2.4.3 (b) and Table 3 of the MISRA Guidelines [2] address
this. One of the measures recommended is the use of a subset of a standardized language, which
is already established practice in the automotive, aerospace, nuclear and defence industries.
Similarly, other safety-related systems standards require subsets of programming languages in
general (e.g. [12] Part 3 Table A.3) even if they do not explicitly require a subset of C++. This
document	therefore	addresses	the	definition	of	a	suitable	subset	of	C++.

Objectives of MISRA C++2.2
In publishing this document regarding the use of the C++ programming language, the MISRA
consortium is not intending to promote the use of C++. Rather, it recognizes the already widespread
use of C++, and this document seeks only to promote the safest possible use of the language.
It is the hope of the MISRA consortium that this document will gain industry acceptance and that
the adoption of a safer subset will become established as best practice by vehicle manufacturers,
component suppliers and other industrial sectors. It should also encourage training and enhance
competence	in	general	C++	programming	and	in	this	specific	subset,	at	both	an	individual	level	
and a company level.
Great emphasis is placed on the use of static checking tools to enforce compliance with the subset
and it is hoped that this too will become common practice by the developers of critical systems.
Although much has been written about the advantages and disadvantages of various programming
languages, this information is not well-known among developers. This document makes such
information readily available, which should lead to an increase in the awareness of language-
choice issues among engineers and managers.

2. The Vision

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

5

Scope3.

Base language issues3.1
The MISRA Guidelines [2] (Table 3) and IEC 61508 [12] require that “a restricted subset of a
standardized structured language” be used for critical systems. This means that the language must
only	be	used	as	defined	in	ISO/IEC	14882:2003	[1],	precluding	the	use	of	language	extensions.

Issues not addressed3.2
Issues of style and code metrics are somewhat subjective. It would be hard for any group of people to
agree	on	what	was	appropriate,	and	it	would	be	inappropriate	for	MISRA	to	give	definitive	advice.	It	
is, however, important that suitable style guidelines and appropriate metrics and limits are selected.
The MISRA consortium is not in a position to recommend particular vendors or tools to enforce the
restrictions adopted. The user of this document is free to choose tools, and vendors are encouraged
to provide tools to enforce the rules. The onus is on the user of this document to demonstrate that
their chosen tool set(s) enforces the rules adequately.

Applicability3.3
This document is designed to be applied to production code in critical systems.
In	 terms	of	 the	 implementation	defined	by	 ISO/IEC	14882:2003	 [1]	§1.4(7),	 this	document	 is	
aimed at a freestanding implementation, although it also addresses library issues since standard
libraries will often be supplied with an embedded compiler. The requirements of this document
will not necessarily be applicable in their entirety to a hosted implementation, although many of
the requirements will help create higher quality software in that context.

Prerequisite knowledge3.4
This document is not intended to be an introduction or training aid to the subjects it embraces. It is
assumed that readers of this document are familiar with the ISO C++ programming language standard
and associated tools, and also have access to the primary reference documents. It also assumes that
developers have received appropriate training and are competent C++ language programmers.

Library issues3.5
In general, it is preferable that library code should fully satisfy the full set of MISRA C++ Rules.
However, it is recognized that there are situations when this ideal cannot be achieved. In these
cases it may be possible to demonstrate that there is only a small safety risk incurred if deviations
are raised against these rules (e.g. Rule 0–1–5, Rule 0–1–10, Rule 14–7–1 and Rule 14–7–2).
In these cases, the deviation raised shall justify that alternative strategies are in place (e.g. by
identifying which library functions are intended to be used and then showing that these, and only
these, have been used).

3. Scope

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

6

Auto-generated code issues3.6
It is recognized that any C++ code produced by an automatic code generation tool introduces
another level of complexity into the software development process. In general, any C++ code
that is produced by such a tool (either automatically by the tool or that is included by the tool but
which is provided by a developer) should fully satisfy the full set of MISRA C++ rules.
However, an automatic code generation tool could potentially detect MISRA C++ violations (e.g.
a missing default clause in a switch statement) and supply code to ensure that the violation is
eliminated. This is considered to be undesirable as the responsibility for ensuring compliance
against MISRA C++ should lie with the developer (for example, could a tool always provide an
appropriate default action?).
MISRA AC INT [3] contains an introduction to the MISRA guidelines for the use of model-based
development and automatic code generation. Note that, at the time of publication of this document,
MISRA	AC	does	not	include	specific	guidance	on	the	use	of	C++	as	a	target	language.
Additionally, if a code-generating tool is to be used, then it will be necessary to select an appropriate
tool and undertake validation. Apart from suggesting that adherence to the requirements of this
document may provide one criterion for assessing a tool, no further guidance is given on this
matter and the reader is referred to the HSE recommendations for COTS [4].
Automatically-generated code must be treated in the same manner as manually produced code for
the	purpose	of	validation	(See	MISRA	Guidelines	[2]	§3.1.3,	Planning	for	V&V).

3. Scope (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

7

Using MISRA C++4.

The software engineering context4.1
Using a programming language to produce source code is only one activity in the software
development process. Adhering to best practice in this one activity is of very limited value if the
other commonly accepted development issues are not addressed. This is especially true for the
production of safety-related systems. These issues are all addressed in the MISRA Guidelines [2]
and, for example, include:

Documented development process;•	
Quality system capable of meeting the requirements of ISO 9001/ISO 90003/TickIT [5], •	
[6], [7];
Project management;•	
Configuration	management;•	
Hazard analysis;•	
Requirements;•	
Design;•	
Coding;•	
Verification;•	
Validation.•	

It is necessary for the software developers to justify that the whole of their development process is
appropriate	for	the	type	of	system	they	are	developing.	This	justification	will	be	incomplete	unless	
a hazard analysis activity has been performed to determine the SIL allocated to the system.

The programming language and coding context4.2
Within the coding phase of the software development process, the language subset is only one
aspect of many and again adhering to best practice in this aspect is of very limited value if the
other issues are not addressed. Key issues, following choice of language, are:

Training;•	
Style guide;•	
Compiler selection and validation;•	
Checking tool validation;•	
Metrics;•	
Test coverage.•	

All decisions made on these issues, including the reasons for those decisions, need to be documented,
and appropriate records should be kept for any activities performed. Such documentation may
then	be	included	in	a	safety	justification,	if	required.

Training4.2.1

In order to ensure an appropriate level of skill and competence on the part of those who produce
the C++ source code, formal training should be provided for:

4. Using MISRA C++

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

8

The use of the C++ programming language for embedded applications;•	
The use of the C++ programming language for high-integrity and safety-related systems;•	
The use of static checking tools used to enforce adherence to the subset.•	

Style guide4.2.2

In addition to adopting the subset, an organization should also have an in-house style guide. This
will contain guidance on issues that do not directly affect the correctness of the code but rather
define	 a	 “house	 style”	 for	 the	 appearance	of	 the	 source	 code.	These	 issues	 are	 subjective	 and	
typically include:

Code layout and use of indenting;•	
Layout of braces “•	 { }” and block structures;
Statement complexity;•	
Naming conventions;•	
Use of comments;•	
Inclusion	of	company	name,	copyright	notice	and	other	standard	file	header	information.•	

While some of the content of the style guide may only be advisory, some may be mandatory.
However the enforcement of the style guide is outside the scope of this document.
For further information on style guides see [8].

Tool selection and validation4.2.3

When choosing a compiler (which should be understood to include the linker), an ISO C++
compliant compiler should be used whenever possible. Where the use of the language is reliant on
an implementation-defined	feature	(as	identified	in	Appendix	B)	then	the	developer	must	benchmark	
the compiler to establish that the implementation is as documented by the compiler writer.
When choosing a static checking tool it is clearly desirable that the tool enforces as many of the
rules in this document as possible. To this end it is essential that the tool is capable of performing
checks	across	the	whole	program,	and	not	only	within	a	single	source	file.	In	addition,	where	a	
checking tool has capabilities to perform checks beyond those required by this document, it is
recommended that the extra checks are used.
The compiler and the static checking tool are generally seen as “trusted” processes. This means
that there is a certain level of reliance on the output of the tools. The developer must therefore
ensure that this trust is not misplaced. Ideally this should be achieved by the tool supplier running
appropriate validation tests. Note that, while it is possible to use a validation suite to test a
compiler for an embedded target, no formal validation scheme exists at the time of publication of
this document. In addition, the tools should have been developed to a quality system capable of
meeting the requirements of ISO 9001/ISO 90003 [5], [6], [7].
It	should	be	possible	for	the	tool	supplier	to	show	records	of	verification	and	validation	activities	
together with change records that show a controlled development of the software. The tool supplier
should have a mechanism for:

Recording faults reported by the users;•	
Notifying existing users of known faults;•	
Correcting faults in future releases.•	

4. Using MISRA C++ (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

9

The size of the existing user base together with an inspection of the faults reported over the
previous 6 to 12 months will give an indication of the stability of the tool.
It is often not possible to obtain this level of assurance from tool suppliers, and in these cases the
onus is on the developer to ensure that the tools are of adequate quality.
Some	possible	approaches	the	developer	could	adopt	to	gain	confidence	in	the	tools	are:

Perform some form of documented validation testing;•	
Assess the software development process of the tool supplier;•	
Review the performance of the tool to date.•	

The validation test could be performed by creating code examples to exercise the tools. For
compilers this could consist of known good code from a previous application. For a static checking
tool,	a	set	of	code	files	should	be	written,	each	breaking	one	rule	in	the	subset	and	together	covering	
as	many	as	possible	of	the	rules.	For	each	test	file	the	static	checking	tool	should	then	find	the	
non-conformant code. Although such tests would necessarily be limited, they would establish a
basic level of tool performance.
It should be noted that validation testing of the compiler must be performed for the same set of compiler
options, linker options and source library versions used when compiling the product code.
The use of additional static analysis checks, where available, is also recommended.

Source complexity metrics4.2.4

The use of source code complexity metrics is highly recommended. These can be used to prevent
unwieldy and un-testable code being written by looking for values outside of established norms.
The use of tools to collect the data is also highly recommended. Many of the static checking tools
that may be used to enforce the subset also have the capability for producing metrics data.
For details of possible source code metrics see “Software Metrics: A Rigorous and Practical
Approach”	by	Fenton	and	Pfleeger	[9]	and	the	MISRA	report	on	Software	Metrics	[10].

Test coverage4.2.5

The	expected	statement	coverage	of	the	software	should	be	defined	before	the	software	is	designed	
and written. Code should be designed and written in a manner that supports high statement
coverage during testing. The term “Design For Test” (DFT) has been applied to this concept in
mechanical, electrical and electronic engineering. This issue needs to be considered during the
activity of writing the code, since the ability to achieve high statement coverage is an emergent
property of the source code.
Use of a subset, which reduces the number of implementation-dependent features and increases
the rigour of module interface compatibility, can lead to software that can be integrated and tested
with greater ease.
Balancing the following metrics can facilitate achieving high statement coverage:

Code size;•	
Cyclomatic complexity.•	

With a planned approach, the extra effort expended on software design, language use and design
for test is more than offset by the reduction in the time required to achieve high statement coverage
during test. See [10], [11].

4. Using MISRA C++ (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

10

Adopting the subset4.3
In order to develop code that adheres to the subset the following steps need to be taken:

Produce a compliance matrix which states how each rule is enforced;•	
Produce a deviation procedure;•	
Formalize the working practices within the quality management system.•	

Compliance matrix4.3.1

In order to ensure that the source code written does conform to the subset it is necessary to have
measures in place that check that none of the rules have been broken. The most effective means
of achieving this is to use one or more of the static checking tools that are available commercially.
Where a rule cannot be checked by a tool, then a manual review will be required.
In order to ensure that all the rules have been covered then a compliance matrix should be produced
which lists each rule and indicates how it is to be checked. See Table 1 for an example, and see
Appendix A for a summary list of the rules, which could be used to assist in generating a full
compliance matrix.

Rule No. Compiler 1 Compiler 2 Checking Tool 1 Checking Tool 2 Manual Review
Rule 0–1–1 warning 347
Rule 0–1–2 error 25
Rule 0–1–3 message 38
Rule 0–1–4 warning 97
Rule 0–1–5 Proc x.y

Table 1: Example compliance matrix

If the developer has additional local restrictions, these too can be added to the compliance matrix.
Where	specific	restrictions	are	omitted,	full	justifications	shall	be	given.	These	justifications	must	
be fully supported by a C++ language expert together with manager level concurrence.

Deviation procedure4.3.2

It is recognized that in some instances it may be necessary to deviate from the rules given in this
document. For example, source code written to interface with the microprocessor hardware will
inevitably require the use of proprietary extensions to the language.
In order for the rules to have authority, it is necessary that a formal procedure be used to authorize
these deviations rather than an individual programmer having discretion to deviate at will. It is
expected that the procedure will be based around obtaining a sign-off for each deviation, or class
of	deviation.	The	use	of	a	deviation	must	be	justified	on	the	basis	of	both	necessity	and	safety.	
While this document does not give, nor intend to imply, any grading of importance of each of the
rules,	it	is	accepted	that	some	provisions	are	more	critical	than	others.	This	should	be	reflected	
in the deviation procedure, where for more serious deviations greater technical competence is
required to assess the risk incurred and higher levels of management are required to accept this
increased risk. Where a formal quality management system exists, the deviation procedure should
be a part of this system.

4. Using MISRA C++ (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

11

Deviations	may	occur	for	a	specific	instance,	i.e.	a	one-off	occurrence	in	a	single	file,	or	for	a	class	
of circumstances, i.e. a systematic use of a particular construct in a particular circumstance, for
example	the	use	of	a	particular	language	extension	to	implement	an	input/output	operation	in	files	
that handle serial communications.
Strict adherence to all rules is unlikely and, in practice, deviations associated with individual
situations, are admissible. There are two categories of deviation.

Project	Deviation:	A	Project	Deviation	is	defined	as	a	permitted	relaxation	of	rule	•	
requirements	to	be	applied	in	specified	circumstances.	In	practice,	Project	Deviations	will	
usually be agreed at the start of a project.
Specific	Deviation:	A	Specific	Deviation	will	be	defined	for	a	specific	instance	of	a	rule	•	
violation	in	a	single	file	and	will	typically	be	raised	in	response	to	circumstances	that	arise	
during the development process.

Project deviations should be reviewed regularly and this review should be a part of the formal
deviation process.
Many, if not most, of the circumstances where rules need to be broken are concerned with input/
output operations. It is recommended that the software be designed such that input/output concerns
are separated from the other parts of the software. As far as possible Project Deviations should
then be restricted to this input/output section of the code. Code subject to Project Deviations
should be clearly marked as such.
The purpose of this document is to avoid problems by thinking carefully about the issues and
taking all responsible measures to avoid the problems. The deviation procedure should not be
used to undermine this intention. In following the rules in this document the developer is taking
advantage of the effort expended by MISRA in understanding these issues. If the rules are to be
deviated from, then the developer is obliged to understand the issues for themselves. All deviations,
standing	and	specific,	should	be	documented.
For	example,	if	it	is	known	beforehand	that	it	will	be	difficult	to	adhere	to	a	rule,	the	software	
developer should submit a written Project Deviation Request and agreement with the customer
should be obtained prior to programming.
A Project Deviation Request should include the following:

Details of the deviation, i.e. the rule that is being violated;•	
Circumstances in which the need for the deviation arises;•	
Potential consequences which may result from the deviation;•	
Justification	for	the	deviation;•	
A demonstration of how safety is assured.•	

When the need for a deviation arises during or at the end of the development process, the software
developer	should	submit	a	written	Specific	Deviation	Request.
A	Specific	Deviation	Request	should	include	the	following:

Details of the deviation, i.e. the rule that is being violated;•	
Potential consequences which may result from the deviation;•	
Justification	for	the	deviation;•	
A demonstration of how safety is assured.•	

Detailed implementation of these procedures is left to the discretion of the user.

4. Using MISRA C++ (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

12

Formalization within quality system4.3.3

The use of the subset, the static checking tools and deviation procedure should be described by
formal documents within the quality management system. They will then be subject to the internal
and external audits associated with the quality system and this will help ensure their consistent use.

Introducing the subset4.3.4

Where an organization has an established C++ coding environment it is recommended that the
requirements of this document be introduced in a progressive manner. It may take 1 to 2 years to
implement all aspects of this document.
Where a product contains legacy code written prior to the use of the subset, it may be impractical
to rewrite it to bring it into conformance with the subset. In these circumstances the developer
must decide upon a strategy for managing the introduction of the subset (for example: all new
modules will be written to the subset and existing modules will be rewritten to the subset if they
are subject to a change which involves more than 30% of the non-comment source lines).

Claiming compliance4.4
Compliance can only be claimed for a product and not for an organization.
When claiming MISRA C++ compliance for a product, a developer is stating that evidence exists
to show:

A compliance matrix has been completed which shows how compliance has been •	
enforced;
All of the C++ code in the product is compliant with the rules of this document or subject •	
to documented deviations;
A list of all instances of rules not being followed is being maintained, and for each •	
instance there is an appropriately signed-off deviation;
The issues mentioned in Section 4.2 have been addressed.•	

Continuous improvement4.5
Adherence	 to	 the	requirements	of	 this	document	should	only	be	considered	as	a	first	step	 in	a	
process of continuous improvement. Users should be aware of the other literature on the subject
(see references) and actively seek to improve their development process by the use of metrics.

4. Using MISRA C++ (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

13

Introduction to the rules5.

This section explains the presentation of the language guidelines (the rules) given in this part of
the document. It serves as an introduction to the main content of the document as presented in that
section.

Rule classification5.1
Every	rule	is	classified	as	“Required”,	“Advisory”	or	“Document”,	as	described	below.	Beyond	this	
basic	classification	the	document	does	not	give,	nor	intend	to	imply,	any	grading	of	importance	of	
each of the rules. All “Required” rules should be considered to be of equal importance, as should
all “Advisory”, and all “Document” rules. The omission of an item from this document does not
imply that it is less important. Furthermore for projects following a safety standard that uses SIL
or a similar measure of risk reduction requirements, all rules are intended to be applied regardless
of the SIL claimed for the software being developed.
The meanings of “Required”, “Advisory” and “Document” rules are as follows.

Required rules5.1.1

These are mandatory requirements placed on the developer. C++ code that is claimed to conform
to MISRA C++ shall comply with every “Required” rule. Formal deviations must be raised where
this is not the case.

Advisory rules5.1.2

These are requirements placed on the developer that should normally be followed. However they
do not have the mandatory status of “Required” rules. Note that the status of “Advisory” does
not mean that these items can be ignored, but that they should be followed as far as is reasonably
practical. Formal deviations are not necessary for “Advisory” rules, but may be raised if it is
considered appropriate.

Document rules5.1.3

These are mandatory requirements placed on the developer whenever the associated feature is
used within code. Deviations are not permitted against this class of rule.

Organization of rules5.2
The rules are organized under the section numbers of ISO/IEC 14882:2003 [1]. However there is
inevitably overlap, with one rule possibly being relevant to a number of topics. Where this is the
case,	the	rule	has	been	placed	under	the	first	relevant	topic.

Exceptions to the rules5.3
Some rules contain an “Exception” section that lists one or more exceptional conditions under
which the rule need not be followed. These exceptions effectively modify the headline rule.

5. Introduction to the rules

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

14

Redundancy in the rules5.4
There are a few cases within this document where a rule is given that refers to a language feature,
which is banned or advised against elsewhere in the document. This is intentional. It may be that
the developer chooses to use that feature, either by raising a deviation against a “Required” rule,
or by choosing not to follow an “Advisory” rule. In this case, the second rule, constraining the use
of that feature, becomes relevant.

Presentation of rules5.5
The individual Rules are presented in the following format:

Rule <number> (<category>) <headline text>

[<issue reference>]
<normative text>
Where	the	fields	are	as	follows:

<•	 number> Every rule has a unique number, consisting of three parts, aa–bb–cc.
aa–bb gives the section number within ISO/IEC 14882:2003 [1] to which the rule relates.
Note, because guidance is not given for every section in ISO/IEC 14882:2003 [1], the
numbering of the designators aa–bb and hence of the section headings in this document are
not contiguous.
cc is a sequence number for rules related to the above section.
Note that section 0–bb	contains	general	guidance	that	does	not	relate	to	any	specific	area	
within the standard.
Sections of the form aa–0 give guidance that relates to section aa of the standard, but which
is not directly attributable to any particular language construct within that section.
<•	 category> is one of “Required”, “Advisory” or “Document”, as explained above.
<•	 headline text> is the rule itself.
<•	 issue reference> indicates the section and paragraph number within
ISO/IEC	14882:2003	[1]	of	a	specific	language	issue	which	is	targeted	by	the	rule.	An	
explanation of these issues is given below.

Normative text is provided for each rule. This text gives, where appropriate, some explanation of
the underlying issues being addressed by the rule, and examples of how to apply the rule.
The normative text is not intended as a tutorial in the relevant language feature, as the reader
is assumed to have a working knowledge of the language. Further information on the language
features can be obtained by consulting the relevant section of the language standard or other C++
language reference books. Where an Issue Reference is given, then the original issue raised in
ISO/IEC 14882:2003 [1] may provide additional help in understanding the rule.
Within the rules and their supporting text the following font styles are used to represent C++
keywords and C++ code:

C++ keywords appear in italic text
C++ code appears in a mono-spaced font, either within other text or as

 separate code fragments;

5. Introduction to the rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

15

Note that where code is quoted, the fragments may be incomplete (for example an if statement
without its body). This is for the sake of brevity.
In code fragments, in order to comply with Rule 3–9–2, the following typedef’d types have been
assumed:

char_t // plain 8 bit character
uint8_t // unsigned 8 bit integer
uint16_t // unsigned 16 bit integer
uint32_t // unsigned 32 bit integer
int8_t // signed 8 bit integer
int16_t // signed 16 bit integer
int32_t // signed 32 bit integer
float32_t // 32 bit floating-point
float64_t // 64 bit floating-point

Note that the bool and wchar_t types do not have typedefs.
Non-specific	variable	names	are	constructed	to	give	an	indication	of	the	type.	For	example:

uint8_t u8a;
int32_t s32a;

Understanding the issue references5.6
Where	a	 rule	 is	 aimed	at	 a	 specific	 issue	within	 ISO/IEC	14882:2003	 [1],	 then	a	 reference	 to	
the standard is indicated in square brackets after the rule. This serves two purposes. Firstly, a
reader may wish to gain a fuller understanding of the rationale behind the rule (for example
when considering a request for a deviation) by consulting the standard. Secondly, this gives extra
information about the nature of the problem.
Rules that do not have an Issue Reference may have originated from a contributing company’s in-
house standard, or have been suggested by a reviewer, or be widely accepted “good practice”.
A key to the references, and advice on interpreting them, is given below.

Key to the source references

Reference Source
Unspecified Unspecified behaviour detailed within the C++ standard
Undefined Undefined behaviour detailed within the C++ standard
Indeterminate Undefined behaviour that arises due to an omission in the C++ standard

of	an	explicit	definition	of	behaviour
Implementation Implementation-defined behaviour detailed within the C++ standard
NDR Behaviour within the C++ standard for which no diagnostic is required
IEC 61508 IEC 61508:1998–2000 [12]

Where numbers follow the reference, they have the following meanings:
For language issues, the section and paragraph number (if appropriate) of the relevant part •	
of the standard are given, i.e. 1.2(3) would indicate Section 1.2, Paragraph 3.
In other references, the relevant section number is given (unless stated otherwise).•	

5. Introduction to the rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

16

Issue references

Where a rule is based on issues within ISO/IEC 14882:2003 [1], it is helpful for the reader to
understand	the	distinction	between	“Unspecified”,	“Undefined”,	“Indeterminate”,	“Implementation-
Defined”	and	“NDR”	issues.

Unspecified

These are language constructs that must compile successfully, but in which the compiler writer
has some freedom as to what the construct does. “Order of evaluation” is an example of this.
It is unwise to place any reliance on the compiler behaving in a particular way. The compiler need
not even behave consistently across all uses of a construct.

Undefined

These are essentially programming errors for which the compiler is not obliged to issue a diagnostic
(error message). Examples are invalid escape sequences or attempting to modify a string literal.
These are particularly important from a safety point of view, as they represent programming errors
that may not necessarily be trapped by the compiler.

Indeterminate

This	is	similar	to	“Undefined”,	but	where	ISO/IEC	14882:2003	[1]	omits	an	explicit	definition	of	
behaviour.

Implementation-defined

These	are	similar	to	the	“Unspecified”	issues,	the	main	difference	being	that	the	compiler	writer	
must take a consistent approach and document it. In other words, the functionality can vary from
one compiler to another, making code non-portable, but on any one compiler the behaviour should
be	well	defined.	An	example	of	this	is	the	behaviour	of	the	integer	division	and	remainder	operators	
“/” and “%” when applied to one positive and one negative integer.
These tend to be less critical from a safety point of view, provided the compiler writer has fully
documented their approach and then implemented it consistently. It is advisable to avoid these
issues where possible.

NDR

“No diagnostic required” (NDR) conditions are those that may lead to program errors, but for
which the complier is not required to issue a diagnostic (error message).

Scope of rules5.7
While the majority of rules can be applied within a single translation unit, all rules shall be applied
with the widest possible interpretation.
In general, the intent is that all the rules shall be applied to templates. However, some rules are
only meaningful for instantiated templates.
Unless	otherwise	specified,	all	rules	shall	apply	to	implicitly-declared or implicitly-defined special
member functions (e.g. default constructor, copy constructor, copy assignment operator and
destructor).

5. Introduction to the rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

17

Rules6.

Appendix C contains a glossary of terms that are used in the formation of the rules that are
presented within this section.

Language independent issues6.0
Unnecessary constructs6.0.1

An unnecessary construct by itself is benign and therefore leads to no faults, but it is a defect.
However, it is possible that these defects may be due to errors and hence they may be coupled to,
or indicate faults. The following rules address the need to reduce the number of these defects.
The attempt to remove all such constructs may reveal the underlying fault if one is present. The
absence of such constructs leads to code that is more readable, faster executing and more easily
maintained. In addition, software analysis tools can produce more accurate results. The presence
of infeasible code, for example, may lead to false positive and false negative messages from static
analysis tools. In dynamic analysis, it prevents the achievement of required coverage metrics.
Readability is impaired, as also is maintainability.

Rule 0–1–1 (Required) A project shall not contain unreachable code.

Rationale

Code	 is	unreachable	 if	 there	 is	no	 syntactic	 (control	flow)	path	 to	 it.	 If	 such	code	exists,	 it	 is	
unclear if this is intentional or simply that an appropriate path has been accidentally omitted.
Compilers may choose not to generate code for these constructs, meaning that, even if the
unreachable code	is	intentional,	it	may	not	be	present	in	the	final	executable	code.
Missing statements, often caused by editing activities, are a common source of unreachable code.

Example
int16_t with_unreach (int16_t para)
{
 int16_t local;

 local = 0;

 switch (para)
 {

 local = para; // unreachable – Non-compliant

 case 1:
 {
 break;
 }

 default:
 {
 break;
 }

 }
 return para;
 para++; // unreachable – Non-compliant
}

6. Rules

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

18

Rule 0–1–2 (Required) A project shall not contain infeasible paths.

Rationale

Infeasible paths occur where there is a syntactic path but the semantics ensure that the control
flow	path	cannot	be	executed	by	any	input	data.	One	of	the	major	problems	here	is	the	explosion	
of infeasible paths caused by:

if … else•	 statement sequences;
Sequences of poorly chosen loop constructs•	

Errors in conditions and poorly designed logic contribute to this problem. It is always possible to
rewrite the code to eliminate these constructs. This process may then reveal faults.
There is the possibility that protective coding techniques generate infeasible code. This code is
usually executable (and hence feasible) in a unit testing environment.

Example
void infeas (uint8_t para, uint8_t outp)
{

 // The condition below will always be true hence the path
 // for the false condition is infeasible. Non-compliant.
 if (para >= 0U)
 {
 outp = 1U;
 }

 // The following if statement combines with the if
 // statement above to give four paths. One from
 // the first condition is already infeasible and
 // the condition below combined with assignment above
 // makes the false branch infeasible. There is therefore
 // only one feasible path through this code.
 if (outp == 1U)
 {
 outp = 0U;
 }
}

enum ec { RED, BLUE, GREEN } col;

if (col <= GREEN) // Non-compliant – always true
{
 // Will always get here
}
else
{
 // Will never get here
}

// The following ifs exhibit similar behaviour.
// Note that u16a is a 16-bit unsigned integer
// and s8a is an 8-bit signed integer.

if (u16a < 0U) // Non-compliant – u16a is always >= 0

if (u16a <= 0xffffU) // Non-compliant – always true

6. Rules

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

19

if (s8a < 130) // Non-compliant – always true

if ((s8a < 10) && (s8a > 20)) // Non-compliant – always false

if ((s8a < 10) || (s8a > 5)) // Non-compliant – always true

// Nested conditions can also cause problems
if (s8a > 10)
{
 if (s8a > 5) // Non-compliant, unless s8a volatile
 {
 // Will always get here.
 }
}

Rule 0–1–3 (Required) A project shall not contain unused variables.

Rationale

Variables declared and never used in a project constitute noise and may indicate that the wrong
variable name has been used somewhere. Removing these declarations reduces the possibility that
they may later be used instead of the correct variable.
If	padding	is	used	within	bit-fields,	then	the	padding	member	should	be	unnamed	to	avoid	violation	
of this rule.

Example
extern void usefn (int16_t a, int16_t b);

class C
{
 ...
};

C c; // Non-compliant - unused

void withunusedvar (void)
{
 int16_t unusedvar; // Non-compliant – unused

 struct s_tag
 {
 signed int a : 3;
 signed int pad : 1; // Non-compliant – should be unnamed
 signed int b : 2;
 } s_var;

 s_var.a = 0;
 s_var.b = 0;
 usefn (s_var.a, s_var.b);
}

Rule 0–1–4 (Required) A project shall not contain non-volatile POD variables
having only one use.

Rationale

With the exception of volatile variables, variables declared and used only once do not contribute
to program computations. A use is either an assignment (explicit initialization) or a reference.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

20

These variables are essentially noise but their presence may indicate that the wrong variable has
been used elsewhere. Missing statements contribute to this problem.

Example
const int16_t x = 19; // Compliant
const int16_t y = 21; // Non-compliant

void usedonlyonce (void)
{
 int16_t once_1 = 42; // Non-compliant
 int16_t once_2;

 once_2 = x ; // Non-compliant
}

Note that x	is	compliant	as	there	are	two	uses,	firstly	when	initialized	and	secondly	when	assigned	
to once_2.

Rule 0–1–5 (Required) A project shall not contain unused type declarations.

Rationale

If a type is declared but not used, then it is unclear to a reviewer if the type is redundant or it has
been left unused by mistake.
See Section 3.5 for associated library issues.

Example
int16_t unusedtype()
{
 typedef int16_t local_Type; // Non-compliant

 return 67;
}

Rule 0–1–6 (Required) A project shall not contain instances of non-
volatile variables being given values that are never
subsequently used.

Rationale

Technically known as a DU dataflow anomaly, this is a process whereby a variable is given a value
that is subsequently never used.	At	best	this	is	inefficient,	but	may	indicate	a	genuine	problem.	Often	
the presence of these constructs is due to the wrong choice of statement aggregates such as loops.

Exception

Loop control variables (see Section 6.6.5) are exempt from this rule.

Example
int16_t critical (int16_t i, int16_t j)
{
 int16_t result = 0;
 int16_t k = (3 * i) + (j * j);

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

21

 // Should k be checked here?
 if (f2 ())
 {
 // k will only be tested here if f2 returns true
 // Initialization of k could be moved here
 if (k > 0)
 {
 throw (42);
 }
 }

 // Non-compliant – value of k not used if f2 () returns false
 return (result);
}

void unusedvalue (int16_t arr[20])
{
 int16_t j;

 j = 2;
 for (int16_t i = 1; i < 10; i++)
 {
 arr[i] = arr[j];
 j++; // Non-compliant – the value assigned to j
 } // on the final loop is never used.
}

void nounusedvalue (int16_t arr[20])
{
 for (int16_t i = 1; i < 10; i++)
 {
 arr[i] = arr[i + 2];
 }
}

Rule 0–1–7 (Required) The value returned by a function having a non-void
return type that is not an overloaded operator shall
always be used.

Rationale

In C++ it is possible to call a function without using the return value, which may be an error. The
return value of a function shall always be used.
Overloaded operators are excluded, as they should behave in the same way as built-in operators.

Exception

The return value of a function may be discarded by use of a (void) cast.

Example
uint16_t func (uint16_t para1)
{
 return para1;
}

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

22

void discarded (uint16_t para2)
{
 func (para2); // value discarded – Non-compliant
 (void)func (para2); // Compliant
}

See also

Rule 5–2–4

Rule 0–1–8 (Required) All functions with void return type shall have external
side effect(s).

Rationale

A function which does not return a value and which does not have external side effects will only
consume time and will not contribute to the generation of any outputs, which may not meet
developer expectations.
The following are examples of external side effects:

Reading	or	writing	to	a	file,	stream,	etc.;•	
Changing the value of a non local variable;•	
Changing the value of an argument having reference type;•	
Using a volatile object;•	
Raising an exception.•	

Example
void pointless (void) // Non-compliant – no external side effects
{
 int16_t local;

 local = 0;
}

Rule 0–1–9 (Required) There shall be no dead code.

Rationale

Any executed statement whose removal would not affect program output constitutes dead code
(also know as redundant code). It is unclear to a reviewer if this is intentional or has occurred due
to an error.

Example
int16_t has_dead_code (int16_t para)
{
 int16_t local = 99;

 para = para + local;
 local = para; // dead code – Non-compliant

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

23

 if (0 == local) // dead code – Non-compliant
 { // dead code – Non-compliant
 local++; // dead code – Non-compliant
 } // dead code – Non-compliant
 return para;
}

Rule 0–1–10 (Required) Every defined function shall be called at least once.

Rationale

Functions or procedures that are not called may be symptomatic of a serious problem, such as
missing paths.
Note that an unused prototype is not a violation of this rule.
See Section 3.5 for associated library issues.

Example
void f1 ()
{
}

void f2 () // Non-compliant
{
}

void f3 (); // Compliant prototype

int32_t main ()
{
 f1 ();

 return (0);
}

Rule 0–1–11 (Required) There shall be no unused parameters (named or
unnamed) in non-virtual functions.

Rationale

Unused function parameters are often due to design changes and can lead to mismatched parameter
lists.

Exception

An	unnamed	parameter	in	the	definition	of	a	function	that	is	used	as	a	callback does not violate
this rule.

Example
typedef int16_t (* CallbackFn)(int16_t a, int16_t b);

int16_t Callback_1 (int16_t a, int16_t b) // Compliant
{
 return a + b;
}

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

24

int16_t Callback_2 (int16_t a, int16_t b) // Non-compliant
{
 return a;
}

int16_t Callback_3 (int16_t, int16_t b) // Compliant by exception
{
 return b;
}

void Dispatch (int16_t n,
 int16_t a,
 int16_t b,
 int16_t c, // Non-compliant
 int16_t) // Non-compliant if Dispatch not a callback.
{
 CallbackFn pFn;

 switch (n)
 {
 case 0: pFn = &Callback_1; break;
 case 1: pFn = &Callback_2; break;
 default: pFn = &Callback_3; break;
 }
 (*pFn)(a, b);
}

See also

Rule 0–1–12

Rule 0–1–12 (Required) There shall be no unused parameters (named or
unnamed) in the set of parameters for a virtual function
and all the functions that override it.

Rationale

Unused function parameters are often due to design changes and can lead to mismatched parameter
lists.

Example
class A
{
public:
 virtual void withunusedpara (uint16_t * para1,
 int16_t unusedpara) = 0;
 virtual void withoutunusedpara (uint16_t * para1,
 int16_t & para2) = 0;
};

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

25

class B1: public A
{
public:
 virtual void withunusedpara (uint16_t * para1,
 int16_t unusedpara)
 {
 *para1 = 1U;
 }

 virtual void withoutunusedpara (uint16_t * para1,
 int16_t & para2)
 {
 *para1 = 1U;
 }
};

class B2: public A
{
public:
 virtual void withunusedpara (uint16_t * para1,
 int16_t unusedpara)
 {
 *para1 = 1U;
 }

 virtual void withoutunusedpara (uint16_t * para1,
 int16_t & para2)
 {
 para2 = 0;
 }
};

See also

Rule 0–1–11

Storage6.0.2

Rule 0–2–1 (Required) An object shall not be assigned to an overlapping
object.

[Undefined	5.17(8)]
Rationale

Assigning between objects that have an overlap in their physical storage leads to undefined
behaviour.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

26

Example
struct s
{
 int16_t m1 [32];
};

struct t
{
 int32_t m2;
 struct s m3;
};

void fn ()
{
 union // Breaks Rule 9–5–1
 {
 struct s u1;
 struct t u2;
 } a;

 a.u2.m3 = a.u1; // Non-compliant
}

See also

Rule 9–5–1

Runtime failures6.0.3

Rule 0–3–1 (Document) Minimization of run-time failures shall be ensured by
the use of at least one of:
(a) static analysis tools/techniques;
(b) dynamic analysis tools/techniques;
(c) explicit coding of checks to handle run-time faults.

Rationale

Run-time	 checking	 is	 an	 issue	 (not	 specific	 to	C++)	 to	which	 developers	 need	 to	 pay	 special	
attention, especially as the C++ language is weak in its provision of any run-time checking. C++
implementations are not required to perform many of the dynamic checks that are necessary for
robust software. It is therefore an issue that C++ developers need to consider carefully, adding
dynamic checks to code wherever there is the potential for run-time errors to occur.
Where	 expressions	 consist	 only	 of	 values	within	 a	well-defined	 range,	 a	 run-time	 check	may	
not	be	necessary,	provided	 it	 can	be	demonstrated	 that	 for	 all	values	within	 the	defined	 range	
the exception cannot occur. Such a demonstration, if used, should be documented along with
the assumptions on which it depends. However, if adopting this approach, be very careful about
subsequent	modifications	of	the	code	that	may	invalidate	the	assumptions,	or	of	the	assumptions	
changing for any other reason.
The following notes give some guidance on areas where consideration needs to be given to the
provision of dynamic checks.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

27

arithmetic errors•	
This	includes	errors	occurring	in	the	evaluation	of	expressions,	such	as	overflow,	underflow,	
division	by	zero	or	loss	of	significant	bits	through	shifting.
In	 considering	 integer	 overflow,	 note	 that	 unsigned	 integer	 calculations	 do	 not	 strictly	
overflow	(producing	undefined	values),	but	the	values	wrap	around	(producing	defined,	but	
possibly unexpected, values).
pointer arithmetic•	
Ensure that when an address is calculated dynamically the computed address is reasonable
and points somewhere meaningful. In particular it should be ensured that if a pointer points
within a structure or array, then when the pointer has been incremented or otherwise altered
it still points to the same structure or array. See Rule 5–0–15, Rule 5–0–16, Rule 5–0–17
and Rule 5–0–18 for restrictions on pointer arithmetic.
array bound errors•	
Ensure that array indices are within the bounds of the array size before using them to index
the array.
function arguments•	
Function arguments should be validated.
pointer dereferencing•	
Where a function returns a pointer and that pointer is subsequently de-referenced the
program	should	first	check	that	the	pointer	is	not	NULL. Within a function, it is relatively
straightforward to reason about which pointers may or may not hold NULL values. Across
function	 boundaries,	 especially	 when	 calling	 functions	 defined	 in	 other	 source	 files	 or	
libraries,	it	is	much	more	difficult.
// Given a pointer to a message, check the message header and return
// a pointer to the body of the message or NULL if the message is
// invalid.
const char_t *msg_body (const char_t * msg)
{
 const char_t * body = NULL;

 if (msg != NULL)
 {
 if (msg_header_valid (msg))
 {
 body = &msg [MSG_HEADER_SIZE];
 }
 }
 return (body);
}

...
char_t msg_buffer [MAX_MSG_SIZE];
const char_t * payload;
...
payload = msg_body (msg_buffer);
if (payload != NULL)
{
 // process the message payload
}

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

28

The techniques that will be employed to minimize run-time failures should be planned and
documented,	e.g.	in	design	standards,	test	plans,	static	analysis	configuration	files,	code	review	
checklists.

Rule 0–3–2 (Required) If a function generates error information, then that
error information shall be tested.

Rationale

A	function	(whether	it	is	part	of	the	standard	library,	a	third	party	library	or	a	user	defined	function)	
may provide some means of indicating the occurrence of an error. This may be via a global
error	flag,	a	parametric	error	flag,	a	special	return	value	or	some	other	means.	Whenever	such	a	
mechanism is provided by a function the calling program shall check for the indication of an error
as soon as the function returns.
Note, however, that the checking of input values to functions is considered a more robust means
of error prevention than trying to detect errors after the function has completed.

Example
extern void fn3 (int32_t i, bool & flag);

int32_t fn1 (int32_t i)
{
 int32_t result = 0;
 bool success = false;

 fn3 (i, success); // Non-compliant - success not checked
 return result;
}

int32_t fn2 (int32_t i)
{
 int32_t result = 0;
 bool success = false;

 fn3 (i, success); // Compliant - success checked
 if (!success)
 {
 throw 42;
 }
 return result;
}

See also

Rule 19–3–1

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

29

Arithmetic6.0.4

Rule 0–4–1 (Document) Use of scaled-integer or fixed-point arithmetic shall be
documented.

Rationale

It	is	extremely	difficult	to	design	and	implement	arithmetic	packages	for	scaled-integer	or	fixed-
point arithmetic without overlooking dangerous cases.
If either is used, then this rule requires that documentation be produced to demonstrate that all the
issues have been covered by the implementation.

Rule 0–4–2 (Document) Use of floating-point arithmetic shall be documented.

Rationale

The	safe	use	of	floating-point	arithmetic	requires	a	high	level	of	numerical	analysis	skills	and	in-
depth knowledge of the compiler and target hardware.
If	floating-point	is	to	be	used,	then	the	following	issues	need	to	be	covered	as	part	of	the	deviation	
process:

A	justification	explaining	why	floating-point	is	the	appropriate	or	only	solution.•	
Demonstrate that appropriate skills are available.•	
Demonstrate that an appropriate process is being applied.•	
Document	the	floating-point	implementation.•	

The paper “What Every Computer Scientist Should Know about Floating-Point Arithmetic” [13]
explains	the	issues	that	need	to	be	considered	when	using	floating-point.

Example

When solving a quadratic equation, the value of b2–4.a.c is calculated. Assume that a=1.22,
b=3.34, c=2.28	and	that	three	significant	digits	are	used	during	calculation.	The	exact	value	of	
b2–4.a.c is 0.0292. However, b2 rounds to 11.2 and 4.a.c rounds to 11.1,	giving	a	final	answer	
of 0.1. This example demonstrates catastrophic cancellation. The subtraction does not cause an
error, but it does expose errors introduced in the multiplications that are used when generating its
operands.

Rule 0–4–3 (Document) Floating-point implementations shall comply with a
defined floating-point standard.

Rationale

Floating-point arithmetic has a range of problems associated with it. Some of these can be
overcome by using an implementation that conforms to a recognized standard. An example of an
appropriate standard is ANSI/IEEE Std 754 [14].
The	definition	of	the	floating-point	types,	in	accordance	with	Rule	3–9–2,	provides	an	opportunity	
for	noting	the	floating-point	standard	in	use,	for	example:

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

30

// IEEE 754 single-precision floating-point
typedef float float32_t;

General6.1
Language6.1.0

Rule 1–0–1 (Required) All code shall conform to ISO/IEC 14882:2003
“The C++ Standard Incorporating Technical
Corrigendum 1”.

[MISRA Guidelines Table 3; IEC 61508 Part 7: Table C.1]
Rationale

The MISRA C++ subset is based on ISO/IEC 14882:2003 [1]. No claim is made as to their
suitability with respect to any other version of the standard. Any reference in this document to
“C++” refers to the ISO/IEC 14882:2003 [1] standard.
It is recognized that it will be necessary to raise deviations (as described in Section 4.3.2) to
permit	certain	language	extensions,	for	example	to	support	hardware	specific	features.
Deviations	 are	 required	 if	 the	 environmental	 limits,	 as	 specified	 in	 Annex	 B	 of
ISO/IEC 14882:2003 [1], are exceeded.

Rule 1–0–2 (Document) Multiple compilers shall only be used if they have a
common, defined interface.

[Implementation 7.5(1, 2, 9)]
Rationale

“Multiple compilers” includes:
Mixed languages;•	
Different compilers;•	
Different versions of the same compiler;•	
Different	configurations	of	the	same	compiler;•	

where “compiler” includes any tool used to translate source code or link object code.
If a module is to be implemented in a language other than C++, or compiled using a different
C++ compiler, then it is essential to ensure that the module will integrate correctly with other
modules. Some aspects of the behaviour of the C++ language are implementation-defined, and
therefore these must be understood for the compiler being used. Examples of issues that need to
be understood include:

Stack usage;•	
Parameter passing;•	
The way in which data values are stored (lengths, alignments, aliasing, overlays etc.).•	

Note that this includes the use of extern "C".

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

31

Rule 1–0–3 (Document) The implementation of integer division in the chosen
compiler shall be determined and documented.

[Implementation 5.6(4)]
Rationale

An ISO compliant compiler can do one of two things when dividing two signed integers,
one of which is positive and one negative. Firstly, it may round up with a negative remainder
(e.g. -5/3 = -1 remainder -2) or, secondly, it may round down with a positive remainder
(e.g. -5/3 = -2 remainder +1).
It is important to determine which of these is implemented by the compiler and to document it for
developers.
Note	that	this	rule	also	covers	modulus	as	it	is	defined	in	terms	of	division.

Lexical conventions6.2
Character sets6.2.2

Rule 2–2–1 (Document) The character set and the corresponding encoding shall
be documented.

Rationale

The source code is written in one or more character sets. Optionally, the program can execute in a
further or multiple character sets. All the character sets that are used shall be documented.
Documenting the character sets that are used increases developer awareness, preventing issues
arising due to the use of incompatible character sets.
For	 example,	 ISO	 10646-1	 [15]	 defines	 an	 international	 standard	 for	 mapping	 character	 sets	
to numeric values. For portability, character-constants and string-literals should only contain
characters that map to a documented subset.

Trigraph sequences6.2.3

Rule 2–3–1 (Required) Trigraphs shall not be used.

Rationale

Trigraphs	are	denoted	by	a	sequence	of	2	question	marks	followed	by	a	specified	third	character	
(e.g. ??- represents a “~” (tilde) character and ??) represents a “]”). They can cause accidental
confusion with other uses of two question marks.

Example

The string
"(Date should be in the form ??-??-??)"

would probably not meet developer expectations, since the compiler would interpret it as
"(Date should be in the form ~~]"

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

32

Alternative tokens6.2.5

Rule 2–5–1 (Advisory) Digraphs should not be used.

Rationale

The digraphs are:
<% %> <: :> %: %:%:

The use of digraphs may not meet developer expectations.

Example
template < typename T>
class A
{
 public:
 template < int32_t i >
 void f2 ();
};

void f (A<int32_t> * a<:10:>) // Non-compliant
<% a<:0:>->f2<20> (); %> // Non-compliant

// The above is equivalent to:
void f (A<int32_t> * a[10])
{
 a[0]->f2<20> (); // Compliant
}

Comments6.2.7

Rule 2–7–1 (Required) The character sequence /* shall not be used within a
C-style comment.

Rationale

C++ does not support the nesting of C-style comments even though some compilers support this
as a non-portable language extension. A comment beginning with /*	continues	until	the	first	*/ is
encountered. Any /* occurring inside a comment is a violation of this rule.

Example

Consider the following code fragment:
/* some comment, end comment marker accidentally omitted

Perform_Critical_Safety_Function(X);
/* this "comment" is Non-compliant */

In reviewing the code containing the call to the function, the assumption is that it is executed code.
Because of the accidental omission of the end comment marker, the call to Perform_Critical_
Safety_Function will not be executed.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

33

Rule 2–7–2 (Required) Sections of code shall not be “commented out” using
C-style comments.

Rationale

Using C-style start and end comment markers for this purpose is dangerous because C-style
comments do not support nesting, and any comments already existing in the section of code would
change the effect.
Additionally, comments should only be used to explain aspects of the code that may not be clear
from the source code itself. Code that is commented-out may become out of date, which may lead
to confusion when maintaining the code.
A more appropriate method of recording the history of changes in source code (e.g. a Source
Control System) should be used instead of commenting-out.

Example
void fn (int32_t i)
{
 /*
 ++i; /* We want to increment "i" */
 */

 for (int32_t j = 0 ; j != i ; ++j)
 {
 }
}

See also

Rule 2–7–1, Rule 2–7–3

Rule 2–7–3 (Advisory) Sections of code should not be “commented out” using
C++ comments.

Rationale

Ideally, comments should only be used to explain aspects of the code that may not be clear from
the source code itself. Code that is commented-out may become out of date, which may lead to
confusion when maintaining the code.
A more appropriate method of recording the history of changes in source code (e.g. a Source
Control System) should be used instead of commenting-out.

Example
void fn (int32_t i)
{
 // ++i; // We want to increment
 for (int32_t j = 0 ; j != i ; ++j)
 {
 }
}

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

34

See also

Rule 2–7–2

Identifiers6.2.10

Rule 2–10–1 (Required) Different identifiers shall be typographically unambiguous.

Rationale

Depending on the font used to display the character set, it is possible for certain glyphs to appear
the same, even though the characters are different. This may lead to the developer confusing an
identifier	with	another	one.
To	help	reduce	the	chance	of	this,	identifiers	shall	not	differ	by	any	combination	of:

Only a mixture of case;•	
The presence or absence of the underscore character;•	
The interchange of the letter “O”, and the number “0”;•	
The interchange of the letter “I”, and the number “1”;•	
The interchange of the letter “I”, and the letter “l” (el);•	
The interchange of the letter “l” (el), and the number “1”;•	
The interchange of the letter “S” and the number “5”;•	
The interchange of the letter “Z” and the number “2”;•	
The interchange of the letter “n” and the letter “h”;•	
The interchange of the letter “B” and the number “8”;•	
The interchange of the letter sequence “rn” (“r” followed by “n”) with the letter “m”.•	

Example
int32_t id1_a_b_c;
int32_t id1_abc; // Non-compliant

int32_t id2_abc; // Non-compliant
int32_t id2_ABC; // Non-compliant

int32_t id3_a_bc;
int32_t id3_ab_c; // Non-compliant

int32_t id4_a_bc;
int32_t id4_ab_c; // Non-compliant

int32_t id5_ii;
int32_t id5_11; // Non-compliant

int32_t id6_i0;
int32_t id6_1O; // Non-compliant

int32_t id7_in;
int32_t id7_1h; // Non-compliant

int32_t id8_Z5;
int32_t id8_2S; // Non-compliant

int32_t id9_ZS;
int32_t id9_25; // Non-compliant

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

35

Rule 2–10–2 (Required) Identifiers declared in an inner scope shall not hide an
identifier declared in an outer scope.

Rationale

If	an	identifier	is	declared	in	an	inner	scope	and	it	uses	the	same	name	as	an	identifier	that	already	
exists in an outer scope, then the innermost declaration will “hide” the outer one. This may lead
to developer confusion.
The	terms	outer	and	inner	scope	are	defined	as	follows:

Identifiers	that	have	file	scope	can	be	considered	as	having	the	outermost	scope.•	
Identifiers	that	have	block	scope	have	a	more	inner	scope.•	
Successive, nested blocks, introduce more inner scopes.•	

Example
int16_t i;
{
 int16_t i; // This is a different variable
 // This is Non-compliant
 i = 3; // It could be confusing as to which i this refers
}

void fn (int16_t i) // Non-compliant
{

}

Rule 2–10–3 (Required) A typedef name (including qualification, if any) shall be
a unique identifier.

Rationale

Reusing a typedef name either as another typedef name or for any other purpose may lead to
developer confusion.
The same typedef shall not be duplicated anywhere in the project, even if the declarations are
identical.
Note	that	where	the	type	definition	is	made	in	a	header file, and that header file is included in
multiple	source	files,	this	rule	is	not	violated.

Example
// f1.cc
namespace NS1
{
 typedef int16_t WIDTH;
}

// f2.cc
namespace NS2
{
 float32_t WIDTH; // Compliant -
 // NS2::WIDTH is not the same as NS1::WIDTH
}

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

36

void f1 ()
{
 typedef int32_t TYPE;
}

void f2 ()
{
 float32_t TYPE; // Non-compliant
}

Rule 2–10–4 (Required) A class, union or enum name (including qualification, if
any) shall be a unique identifier.

Rationale

Reusing a class, union or enum name, either as another type or for any other purpose, may lead to
developer confusion.
The class, union or enum name shall not be duplicated anywhere in the project, even if the
declarations are identical.
This	 rule	 is	 not	 violated	when	 the	 definition	 is	made	 in	 a	header file, and that header file is
included	in	multiple	source	files.

Example
void f1 ()
{
 class TYPE { };
}

void f2 ()
{
 float32_t TYPE; // Non-compliant
}

Rule 2–10–5 (Advisory) The identifier name of a non-member object or function
with static storage duration should not be reused.

Rationale

Regardless	of	scope,	no	identifier	with	static	storage	duration	should	be	re-used	across	any	source	
files	in	the	project. This includes objects or functions with external linkage and any objects or
functions	with	the	static	storage	class	specifier.
While the compiler can understand this and is in no way confused, the possibility exists for the
developer to incorrectly associate unrelated variables with the same name.

Example
namespace NS1
{
 static int32_t global = 0;
}

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

37

namespace NS2
{
 void fn ()
 {
 int32_t global; // Non-compliant
 }
}

Rule 2–10–6 (Required) If an identifier refers to a type, it shall not also refer to
an object or a function in the same scope.

Rationale

For C compatibility, it is possible in C++ for a name to refer to both a type and object or a type
and function. This can lead to confusion.

Example
typedef struct vector { uint16_t x ; uint16_t y; uint16_t z; } vector;
// Non-compliant ^^ Non-compliant ^^

 struct vector { uint16_t x ; uint16_t y; uint16_t z; } vector;
// Non-compliant ^^ Non-compliant ^^

Literals6.2.13

Rule 2–13–1 (Required) Only those escape sequences that are defined in
ISO/IEC 14882:2003 shall be used.

[Undefined	2.13.2(3)]
Rationale

The	use	of	an	undefined	escape	sequence	leads	to	undefined behaviour.
The	defined	escape	sequences	(ISO/IEC	14882:2003	[1]	§2.13.2)	are:
\n, \t, \v, \b, \r, \f, \a, \\, \?, \', \", \<Octal Number>, \x<Hexadecimal Number>

Example
void fn ()
{
 const char_t a[2] = "\k"; // Non-compliant
 const char_t b[2] = "\b"; // Compliant

}

See also

Rule 2–13–2

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

38

Rule 2–13–2 (Required) Octal constants (other than zero) and octal escape
sequences (other than “\0”) shall not be used.

[Implementation 2.13.2(1, 2)]
Rationale

Any integer constant beginning with a “0” (zero) is treated as octal. Because of this, it is possible
for	a	zero-prefixed	constant	that	is	intended	to	be	a	decimal	number	to	be	incorrectly	entered	as	an	
octal number, contrary to developer expectations.
Octal escape sequences can also be problematic because the inadvertent introduction of a decimal
digit (i.e. “8” or “9”) ends the octal escape and introduces another character.
The integer constant zero (written as a single numeric digit), is strictly speaking an octal constant,
but is a permitted exception to this rule. Additionally, “\0” is the only permitted octal escape
sequence.

Example

The following array initialization for 3-digit decimal bus messages would not behave as
expected:

code[1] = 109; // Compliant - decimal 109
code[2] = 100; // Compliant - decimal 100
code[3] = 052; // Non-compliant - equivalent to decimal 42
code[4] = 071; // Non-compliant - equivalent to decimal 57

The	 value	 of	 the	first	 expression	 in	 the	 following	 example	 is	 implementation-defined because
the character constant consists of two characters, “\10” and “9”. The second character constant
expression contains the single character “\100”.

code[5] = '\109'; // Non-compliant - implementation-defined,
 // two character constant
code[6] = '\100'; // Non-compliant - set to 64.

Rule 2–13–3 (Required) A “U ” suffix shall be applied to all octal or hexadecimal
integer literals of unsigned type.

Rationale

The type of an integer is dependent on a complex combination of factors including:
The magnitude of the constant;•	
The implemented sizes of the integer types;•	
The	presence	of	any	suffixes;•	
The number base in which the value is expressed (i.e. decimal, octal or hexadecimal).•	

For example, the value 0x8000 is of type unsigned int in a 16-bit environment, but of type (signed)
int in a 32-bit environment. If an overload set includes candidates for an unsigned int and an int,
then the overload that would be matched by 0x8000 is therefore dependent on the implemented
integer size. Adding a “U ”	suffix	to	the	value	specifies	that	it	is	unsigned.
Note	that	the	usage	context	may	also	require	the	use	of	suffixes,	as	shown	in	Section	6.5.0.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

39

Example
template <typename T>
void f (T);

template <>
void f < uint16_t > (uint16_t);

template <>
void f < int16_t > (int16_t);

void b ()
{
 uint16_t u16a = 0U; // Compliant

 f (0x8000); // Non-compliant on a 16-bit platform.
 u16a = u16a + 0x8000; // Non-compliant as context is unsigned.
}

Rule 2–13–4 (Required) Literal suffixes shall be upper case.

Rationale

Using	upper	case	literal	suffixes	removes	the	potential	ambiguity	between	“1”	(digit	1)	and	“l”	
(letter el) for declaring literals.

Example
const uint32_t a = 0U;
const uint32_t b = 0u; // Non-compliant
const int64_t c = 0L;
const int64_t d = 0l; // Non-compliant
const uint64_t e = 0UL;
const uint64_t f = 0Ul; // Non-compliant
const uint32_t g = 0x12bU;
const uint32_t h = 0x12bu; // Non-compliant
const float32_t m = 1.2F;
const float32_t n = 2.4f; // Non-compliant
const float128_t p = 1.2L;
const float128_t n = 2.4l; // Non-compliant

See also

ISO/IEC	14882:2003	[1]	§2.13

Rule 2–13–5 (Required) Narrow and wide string literals shall not be concatenated.

[Undefined	2.13.4(3)]
Rationale

Concatenation of wide and narrow string literals leads to undefined behaviour.

Example
char_t n_array[] = "Hello" "World"; // Compliant
wchar_t w_array[] = L"Hello" L"World"; // Compliant
wchar_t mixed[] = "Hello" L"World"; // Non-compliant

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

40

Basic concepts6.3
Declarations and definitions6.3.1

Rule 3–1–1 (Required) It shall be possible to include any header file in multiple
translation units without violating the One Definition
Rule.

Rationale

Header files should be used to declare objects, functions, inline functions, function templates,
typedefs,	macros,	 classes,	 and	 class	 templates	 and	 shall	 not	 contain	 or	 produce	 definitions	 of	
objects or functions (or fragment of functions or objects) that occupy storage.
A header file	is	considered	to	be	any	file	that	is	included	via	the	#include directive, regardless of
name	or	suffix.

Example
// a.h
 void f1 (); // Compliant
 void f2 () { } // Non-compliant
inline void f3 () { } // Compliant
template <typename T>
void f4 (T) { } // Compliant

int32_t a; // Non-compliant

// a.cpp
#include "a.h"

Rule 3–1–2 (Required) Functions shall not be declared at block scope.

Rationale

A function declared at block scope will refer to a member of the enclosing namespace, and so the
declaration should be explicitly placed at the namespace level.
Additionally, where a declaration statement could either declare a function or an object, the
compiler will choose to declare the function. To avoid potential developer confusion over the
meaning of a declaration, functions should not be declared at block scope.

Example
class A
{
};

void b1 ()
{
 void f1 (); // Non-compliant - declaring a function in block scope
 A a (); // Non-compliant - appears to declare an object with no
 // arguments to constructor, but it too declares a
 // function 'a' returning type 'A' and taking no
 // parameters.
}

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

41

Rule 3–1–3 (Required) When an array is declared, its size shall either be stated
explicitly or defined implicitly by initialization.

[Undefined	5.7(5,	6)]
Rationale

Although it is possible to declare an array of incomplete type and access its elements, it is safer to
do so when the size of the array can be explicitly determined.

Example
 int32_t array1[10]; // Compliant
extern int32_t array2[]; // Non-compliant
 int32_t array3[] = { 0, 10, 15 }; // Compliant
extern int32_t array4[42]; // Compliant

One Definition Rule6.3.2

The One Definition Rule	is	defined	in	Section	3.2	of	ISO/IEC	14882:2003	[1].
In essence, the requirement for One Definition Rule arises because C++ compilers treat each source
file	(with	included	headers)	as	separate	“translation	units”	where	each	translation	unit	is	compiled	
in isolation. The set of compiled translation units are then linked to form the executable program.
The linker is allowed to assume that objects, templates, types, etc. that share the same name in
different	translation	units	refer	to	the	same	definition.	The	linker	is	not	required	to	check	that	these	
definitions	are	the	same.
In the following example the same struct S	appears	to	be	defined	in	both	translation	units,	but	
as	the	definitions	are	not	the	same,	the	result	is	not	what	the	developer	expects.

// source file file1.cpp
struct S
{
 int32_t x;
 int32_t y;
};

int32_t XminusY (S & s)
{
 return (s.x – s.y);
}

// source file file2.cpp
struct S {
 int32_t y; // note order of x and y exchanged
 int32_t x;
};

void setX (S & s, int32_t v) { s.x = v; }
void setY (S & s, int32_t v) { s.y = v; }

The user may be surprised that the result of XminusY is y - x not x - y.
As	stated	above,	the	linker	is	not	required	to	check	the	compatibility	of	the	two	definitions;	the	
One Definition Rule	puts	the	onus	on	the	developer	to	ensure	that	the	definitions	are	compatible.	
The following rules (Rule 3–2–1 to Rule 3–2–4) reinforce the need to follow the One Definition
Rule,	and	provide	specific	instructions	for	the	developer.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

42

Rule 3–2–1 (Required) All declarations of an object or function shall have
compatible types.

[NDR	3.2(3),	Undefined	3.2(5)]
Rationale

It is undefined behaviour if the declarations of an object or function in two different translation
units do not have compatible types.
The easiest way of ensuring object or function types are compatible is to make the declarations
identical.

Example
// File a.cpp
extern int32_t a;
extern int32_t b [];
extern char_t c;

int32_t f1 ();
int32_t f2 (int32_t);

// File b.cpp
extern int64_t a; // Non-compliant – not compatible
extern int32_t b [5]; // Compliant
int16_t c; // Non-compliant

char_t f1 (); // Non-compliant
char_t f2 (char_t); // Compliant – not the same function as
 // int32_t f2 (int32_t)

See also

Rule 3–9–1

Rule 3–2–2 (Required) The One Definition Rule shall not be violated.

Rationale

Violation of the One Definition Rule	([1]	§3.2)	leads	to	undefined behaviour. In general, this means
that	the	program	shall	contain	exactly	one	definition	of	every	non-inline	function	or	object.
Additionally:

The	definitions	of	a	type	shall	consist	of	the	same	sequence	of	tokens,	and;•	
The	definitions	of	a	template	shall	consist	of	the	same	sequence	of	tokens,	and;•	
The	definitions	of	an	inline	function	shall	consist	of	the	same	sequence	of	tokens.•	

Note that for the purposes of this rule, typedefs shall be treated as types.

Example
// File a.cpp
struct S1
{
 int32_t i;
};

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

43

struct S2
{
 int32_t i;
};

// File b.cpp
struct S1
{
 int64_t i;
}; // Non-compliant – token sequence different

struct S2
{
 int32_t i;
 int32_t j;
}; // Non-compliant - token sequence different

Rule 3–2–3 (Required) A type, object or function that is used in multiple
translation units shall be declared in one and only one file.

Rationale

Having a single declaration of a type, object or function allows the compiler to detect incompatible
types for the same entity.
Normally,	this	will	mean	declaring	an	external	identifier	in	a	header file that will be included in
any	file	where	the	identifier	is	defined	or	used.

Example
// header.hpp
extern int16_t a;

// file1.cpp
#include "header.hpp"

extern int16_t b;

// file2.cpp
#include "header.hpp"

extern int32_t b; // Non-compliant - compiler may not detect the error
int32_t a; // Compliant - compiler will detect the error

Rule 3–2–4 (Required) An identifier with external linkage shall have exactly
one definition.

[NDR	3.2(3),	Undefined	3.2(5)]
Rationale

It is undefined behaviour	if	an	identifier	is	used	for	which	multiple	definitions	exist	(in	different	
translation	units)	or	no	definition	exists	at	all.	With	the	exception	of	templates	and	inline	functions,	
multiple	definitions	in	different	translation	units	are	not	permitted,	even	if	the	definitions	are	the	
same.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

44

Example
// file1.cpp
int32_t i = 0;

// file2.cpp
int32_t i = 1; // Non-compliant

Declarative regions and scope6.3.3

Rule 3–3–1 (Required) Objects or functions with external linkage shall be
declared in a header file.

Rationale

Placing the declarations of objects and functions with external linkage in a header file documents
that they are intended to be accessible from other translation units.
If external linkage is not required, then the object or function shall either be declared in an unnamed
namespace or declared static.
This will reduce the visibility of objects and functions, which is considered to be good practice.

Exception

This rule does not apply to main, or to members of unnamed namespaces.

Example
// header.hpp
extern int32_t a1;
extern void f3 ();

// file1.cpp
#include "header.hpp"

 int32_t a1 = 0; // Compliant
 int32_t a2 = 0; // Non-compliant
static int32_t a3 = 0; // Compliant

namespace
{
 int32_t a4 = 0; // Compliant

 void f1 () // Compliant
 {
 }
}

static void f2 () // Compliant
{
}

void f3 () // Compliant
{
 a1 = 1;
 a2 = 1;
 a3 = 1;
 a4 = 1;
}

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

45

void f4 () // Non-compliant
{
 a1 = 2;
 a2 = 2;
 a3 = 2;
 a4 = 2;
}

void main () // Compliant by exception
{
 f1 ();
 f2 ();
 f3 ();
 f4 ();
}

Rule 3–3–2 (Required) If a function has internal linkage then all re-
declarations shall include the static storage class
specifier.

Rationale

If the declaration of a function includes the static	 storage	 class	 specifier,	 then	 it	 has	 internal	
linkage.
A re-declaration of such a function is not required to have the static keyword, but it will still have
internal linkage. However, this is implicit and may not be obvious to a developer. It is therefore
good practice to apply the static keyword consistently so that the linkage is explicitly stated.

Example
static void f1 ();
static void f2 ();

 void f1 () { } // Non-compliant
static void f2 () { } // Compliant

Name lookup6.3.4

Rule 3–4–1 (Required) An identifier declared to be an object or type shall be
defined in a block that minimizes its visibility.

Rationale

Defining	variables	in	the	minimum	block	scope	possible	reduces	the	visibility	of	those	variables	
and	therefore	reduces	the	possibility	that	these	identifiers	will	be	used	accidentally.	A	corollary	
of this is that global objects (including singleton function objects) shall be used in more than one
function.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

46

Example
void f (int32_t k)
{
 int32_t j = k * k; // Non-compliant

 {
 int32_t i = j; // Compliant

 std::cout << i << j << std::endl;
 }
}

In	the	above	example,	the	definition	of	j could be moved into the same block as i, reducing the
possibility that j will be incorrectly used later in f.

Types6.3.9

Rule 3–9–1 (Required) The types used for an object, a function return type, or
a function parameter shall be token-for-token identical
in all declarations and re-declarations.

Rationale

If a re-declaration has compatible types but not types which are token-for-token identical, it may
not be clear to which declaration that re-declaration refers.

Example
typedef int32_t INT;

 INT i;
extern int32_t i; // Non-compliant

 INT j;
extern INT j; // Compliant

// The following lines break Rule 3–9–2
extern void f (signed int);
 void f (int); // Non-compliant
extern void g (const int);
 void g (int); // Non-compliant

See also

Rule 3–2–1, Rule 3–9–2

Rule 3–9–2 (Advisory) typedefs that indicate size and signedness should be
used in place of the basic numerical types.

[Implementation 3.9.1(1, 5)]
Rationale

The basic numerical types of char, int, short, long, float, double and long double should not be
used,	but	specific-length	typedefs should be used. This rule helps to clarify the size of the storage,
but does not guarantee portability because of the asymmetric behaviour of integral promotion. See

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

47

the discussion of integral promotion in Section 6.5.0. It is still important to understand the integer
size of the implementation.
Developers should be aware of the actual implementation of the typedefs	under	these	definitions.

Exception

The wchar_t does not need a typedef as it always maps to a type that supports wide characters.
The char_t typedef does not indicate size and signedness and is simply included to allow char
objects to be declared without the use of the basic char type, allowing any use of (plain) char to
be detected and reported by analysis tools.

Example

The ISO (POSIX) typedefs as shown below are recommended and are used for all basic numerical
and character types in this document. For a 32-bit integer machine, these are as follows:

typedef char char_t;
typedef signed char int8_t;
typedef signed short int16_t;
typedef signed int int32_t;
typedef signed long int64_t;
typedef unsigned char uint8_t;
typedef unsigned short uint16_t;
typedef unsigned int uint32_t;
typedef unsigned long uint64_t;
typedef float float32_t;
typedef double float64_t;
typedef long double float128_t;

typedefs	are	not	considered	necessary	in	the	specification	of	bit-field	types.

Rule 3–9–3 (Required) The underlying bit representations of floating-point
values shall not be used.

[Implementation 3.9.1(8)]
Rationale

The	storage	 layout	used	for	floating-point	values	may	vary	 from	one	compiler	 to	another,	and	
therefore	no	floating-point	manipulations	shall	be	made	which	rely	directly	on	the	way	the	values	
are stored. The in-built operators and functions, which hide the storage details from the developer,
should be used.

Example
float32_t My_fabs (float32_t f)
{
 uint8_t * pB = reinterpret_cast< uint8_t * >(&f);

 *(pB + 3) &= 0x7f; // Non-compliant – generate the absolute value
 // of an IEEE-754 float value.
 return (f);
}

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

48

Standard conversions6.4
Integral promotions6.4.5

Rule 4–5–1 (Required) Expressions with type bool shall not be used as
operands to built-in operators other than the
assignment operator =, the logical operators &&, ||, !,
the equality operators == and !=, the unary & operator,
and the conditional operator.

Rationale

The use of bool operands with other operators is unlikely to be meaningful (or intended). This rule
allows the detection of such uses, which often occur because the logical operators (&&, || and !)
can be easily confused with the bitwise operators (&, | and ~).

Example
bool b1 = true;
bool b2 = false;
int8_t s8a;

if (b1 & b2) // Non-compliant
if (b1 < b2) // Non-compliant
if (~b1) // Non-compliant
if (b1 ^ b2) // Non-compliant
if (b1 == false) // Compliant
if (b1 == b2) // Compliant
if (b1 != b2) // Compliant
if (b1 && b2) // Compliant
if (!b1) // Compliant
s8a = b1 ? 3 : 7; // Compliant

Rule 4–5–2 (Required) Expressions with type enum shall not be used as
operands to built-in operators other than the subscript
operator [], the assignment operator =, the equality
operators == and !=, the unary & operator, and the
relational operators <, <=, >, >=.

Rationale

Enumerations have implementation-defined representation and so should not be used in arithmetic
contexts.

Example
enum { COLOUR_0, COLOUR_1, COLOUR_2, COLOUR_COUNT } colour;

if (COLOUR_0 == colour) // Compliant
if ((COLOUR_0 + COLOUR_1) == colour) // Non-compliant
if (colour < COLOUR_COUNT) // Compliant

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

49

Rule 4–5–3 (Required) Expressions with type (plain) char and wchar_t shall not
be used as operands to built-in operators other than the
assignment operator =, the equality operators == and
!=, and the unary & operator.

Rationale

Manipulation of character data may generate results that are contrary to developer expectations.
For	 example,	 ISO/IEC	 14882:2003	 [1]	 §2.2(3)	 only	 requires	 that	 the	 digits	 “0”	 to	 “9”	 have	
consecutive numerical values.

Exception

Exceptionally, the following operators may be used if the associated restriction is observed:
The binary •	 + operator may be used to add an integral value in the range 0 to 9 to ‘0’;
The binary •	 – operator may be used to subtract character ‘0’;
The relational operators •	 <, <=, >, >= may be used to determine if a character (or wide
character) represents a digit.

Example
char_t ch = 't'; // Compliant
uint8_t v;

if ((ch >= 'a') && (ch <= 'z')) // Non-compliant
{
}

if ((ch >= '0') && (ch <= '9')) // Compliant by exception
{
 v = ch – '0'; // Compliant by exception
 v = ch – '1'; // Non-compliant
}

else
{
 // ...
}
ch = '0' + v; // Compliant by exception
ch = 'A' + v; // Non-compliant

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

50

Pointer conversions6.4.10

Rule 4–10–1 (Required) NULL shall not be used as an integer value.

Rationale

In C++, the literal 0 is both an integer type and the null-pointer-constant. To meet developer
expectations, NULL should be used as the null-pointer-constant, and 0 for the integer zero.
Note: as a result of this rule, NULL is considered to have pointer type.

Example
#include <cstddef>

void f1 (int32_t);
void f2 (int32_t *);

void f3 ()
{
 f1 (NULL); // Not-compliant, NULL used as an integer
 f2 (NULL); // Compliant
}

Rule 4–10–2 (Required) Literal zero (0) shall not be used as the null-pointer-
constant.

Rationale

In C++, the literal 0 is both an integer type and the null-pointer-constant. To meet developer
expectations, NULL should be used as the null-pointer-constant, and 0 for the integer zero.

Example
#include <cstddef>

void f1 (int32_t);
void f2 (int32_t *);

void f3 ()
{
 f1 (0); // Compliant
 f2 (0); // Non-compliant, 0 used as the null pointer constant
}

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

51

Expressions6.5
General6.5.0

Strong typing

When developing critical systems it is considered best practice to use strong typing. This facility
is not rigidly enforced for the built-in types of the C++ language, so the following guidance has
been produced to strengthen the use of those types.

Arithmetic type conversions

Implicit and explicit type conversions

The C++ language allows the developer considerable freedom and will allow conversions between
different arithmetic types to be performed automatically. An explicit cast may be introduced for
functional reasons, for example:

To change the type in which a subsequent arithmetic operation is performed.•	
To truncate a value deliberately.•	
To make a type conversion explicit in the interests of clarity.•	

The	insertion	of	a	cast	for	purposes	of	clarification	is	often	helpful,	but	when	taken	to	excess,	the	
practice can lead to unreadable code. As demonstrated below, there are some implicit conversions
that can safely be ignored and others that cannot.

Types of implicit conversion

There are three particular categories of implicit type conversion that need to be distinguished.

Integral promotion conversions

Integral promotion describes a process whereby arithmetic operations are always conducted on
integer operands of type int or long (signed or unsigned). Operands of type char, short and bool
are always converted to type int or unsigned int whilst those of type wchar_t and enum may be
converted to int, unsigned int, long or unsigned long. These are referred to as small integer types.
The	rules	of	integral	promotion	([1]	§4.5)	require	that	in	most	arithmetic	operations,	an	operand	
of a small integer type be converted to int, if an int is able to represent all values of the original
type; otherwise the value is converted to unsigned int, long or unsigned long. A bit-field will be
converted to an int if an int is able to represent all the values; it will be converted to an unsigned
int if an unsigned int is able to represent all the values, otherwise no promotion takes place.
Integral promotion is frequently confused with “balancing” of operands (described below).
Balancing only occurs for some binary operators, whilst integral promotion can take place for
other expressions when a small integer is used.
Because of integral promotion, the result of adding two objects of type unsigned short is always
a value of type signed int or unsigned int; in fact, the addition is performed in this promoted type.
It is therefore possible for such an operation to derive a result whose value exceeds the size that
could be accommodated in the original type of the operands. For example, if the size of an int is
32 bits, it is possible to multiply two objects of type short (16 bits) and derive a 32-bit result with
no	danger	of	overflow.	On	the	other	hand	if	the	size	of	an	int is only 16 bits, the product of two
16-bit objects will only yield a 16-bit result and care must be taken to ensure that an unexpected

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

52

overflow	does	not	remain	undetected.
Integral promotion also applies to some unary operators. For example, the result of applying a bitwise
negation operator (~) to an unsigned char operand is typically a negative value of type signed int.
Integral promotion is a fundamental inconsistency in the C++ language (inherited from C) whereby
the small integer types behave differently from long and int types. The use of typedefs is a practice
that is encouraged in MISRA C++. However, because the behaviour of the various integer types is
not consistent, it can be unsafe to ignore the underlying base types (see description on following
pages) unless some restrictions are placed on the way in which expressions are constructed. It is
the intention of the following rules that the effects of integral promotion should be neutralized in
order to avoid these anomalies.

Assigning conversions

Assigning conversions occur when:
The type of an assignment expression is converted to the type of the assignment object;•	
The type of an initializer expression is converted to the type of the initialized object;•	
The type of a function call argument is converted to the type of the formal parameter as •	
declared in the function prototype;
The type of the expression used in a return statement is converted to the type of the •	
function as declared in the function prototype;
The type of the constant expression in a switch case label is converted to the promoted •	
type of the controlling expression. This conversion is performed only for the purposes of
comparison.

In each case, the value of an arithmetic expression is unconditionally converted, where necessary,
to another type.

Balancing conversions

Balancing conversions for arithmetic and enumeration types are described in ISO/IEC 14882:2003
([1]	§5(9))	under	the	term	“Usual	Arithmetic	Conversions”.	This	is	a	set	of	rules	that	provides	
a mechanism to yield a common type when two operands of a binary operator are balanced to a
common type. Also, the second and third arguments of the conditional operator (? :)	([1]	§5.16)	
are sometimes balanced to a common type.
The balancing rules are preceded by the process of integral promotion (described above). Integral
promotion happens as part of the usual arithmetic conversions even when two operands are of
identical type.

Integral types having special semantics

In C++ there are a number of types that have an integral representation and can be freely used
in any arithmetic expression. The types concerned are bool, char, wchar_t and enum. For the
purpose of this document, bit-field objects are considered to have a special type.
Thus, an expression of type bool can be multiplied by an expression of type char, which is then
added to an expression of enum type.
Terminology	will	be	defined	and	rules	introduced	to	restrict	the	use	of	these	types	to	appropriate	
contexts.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

53

Bit-fields

Depending on the width of a bit-field, it may undergo integral promotions and so, like the small
integer types, it can lead to operations that have dangerous conversions. Therefore bit-fields should
be	considered	as	integral	types	of	fixed	length	(that	of	the	number	of	specified	bits)	the	permissible	
range being from length zero to the number of bits of the largest integral type.

Dangerous type conversions

There are a number of potential dangers associated with type conversions that must be avoided:
Loss of value•	 : Conversion to a type where the magnitude of the value cannot be
represented.
Loss of sign•	 : Conversion from a signed type to an unsigned type resulting in loss of sign.
Loss of precision•	 :	Conversion	from	a	floating	type	to	an	integer	type	with	consequent	loss	
of	precision.	Conversion	from	a	floating	type	to	a	narrower	floating	type	(which	may	also	
be a loss of value).

The only type conversions that can be guaranteed safe for all data values and all possible conforming
implementations are:

Conversion of an integral value to a wider type of the same signedness;•	
Conversion	of	a	floating	type	to	a	wider	floating	type.•	

In practice, if assumptions are made about typical type sizes, it is possible to classify other
type conversions as safe. In general, MISRA C++ adopts the principle that it is wise to identify
potentially dangerous type conversions by requiring that the conversion be made explicit.
Other dangers in the area of type conversion also need to be recognized. These issues arise from
areas	of	misunderstanding	and	difficulty	in	the	C++	language	rather	than	because	data	values	are	
not preserved.

Type widening in integral promotion•	 : The type in which integral expressions are
evaluated depends on the type of the operands after any integral promotion. It is always
possible to multiply two 8-bit values and access a 16-bit result if the magnitude requires it.
It is sometimes, though not always, possible to multiply two 16-bit values and retrieve a
32-bit result. It is safer never to rely on the widening type afforded by integral promotion.
Consider the following example:

uint16_t u16a = 40000; // unsigned short / unsigned int ?
uint16_t u16b = 30000; // unsigned short / unsigned int ?
uint32_t u32x = u16a + u16b; // u32x = 70000 or 4464 ?

The expected result is presumably 70000, but the value assigned to u32x will in practice
depend on the implemented size of an int. If the implemented size of an int is 32 bits, the
addition will occur in 32-bit signed arithmetic and the correct value will be stored. If the
implemented size of an int is only 16 bits, the addition will take place in 16-bit unsigned
arithmetic, wraparound will occur and will yield the value 4464 (70000 % 65536).
Wraparound	in	unsigned	arithmetic	is	well	defined	and	may	even	be	intended,	but	is	
potentially confusing.
Evaluation type confusion•	 : A similar problem arises from a common misconception
among	developers	that	the	type	in	which	a	calculation	is	conducted	is	influenced	in	some	
way by the type to which the result is assigned or converted. For example, in the following

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

54

code the two 16-bit objects are added together in 16-bit arithmetic (on a platform with a
16-bit int), and the result is converted to type uint32_t on assignment.

u32x = u16a + u16b;

It is not unusual for developers to be deceived into thinking that the addition is performed
in 32-bit arithmetic — because of the type of u32x.
Confusion	of	this	nature	is	neither	confined	to	integer	arithmetic	nor	to	implicit	conversions.	
The	following	examples	demonstrate	some	statements	in	which	the	result	is	well	defined	but	
the calculation may not be performed in the type that the developer assumes.

u32a = static_cast< uint32_t >(u16a * u16b); // Evaluated in u16
f64a = u16a / u16b; // Evaluated in u16
f32a = static_cast< float32_t >(u16a / u16b); // Evaluated in u16
f64a = f32a + f32b; // Evaluated in f32
f64a = static_cast< float64_t >(f32a + f32b); // Evaluated in f32

Change of signedness in arithmetic operations•	 : Integral promotion will often result in
two unsigned operands yielding a result of type (signed) int. For example, the addition
of two 16-bit unsigned operands will yield a signed 32-bit result if int is 32 bits, but an
unsigned 16-bit result if int is 16 bits.
Change of signedness in bitwise operations•	 : Integral promotion can have some
particularly unfortunate repercussions when bitwise operators are applied to small
unsigned types. For example, a bitwise complement operation on an operand of type
unsigned char will generally yield a result of type (signed) int with a negative value. The
operand is promoted to type int before the operation and the extra high order bits are set
by the complement process. The number of extra bits, if any, is dependent on the size of an
int, which is hazardous if the complement operation is followed by a right shift.

In order to avoid the pitfalls associated with the issues described above, it is important to establish
some	principles	to	constrain	the	way	in	which	expressions	are	constructed.	To	start	with,	definitions	
of some concepts are presented below.

Underlying type

In a programming language, a type has a representation that is a mapping onto the hardware
architecture. A type also has an implementation equating to the set of operations which can be
performed on that type via its representation.
MISRA C:2004 introduced the concept of underlying type. Unfortunately the term is already used
in C++ as a euphemism for representation, where the representation of one type is described in
terms	of	other	types.	This	use,	however,	is	confined	to	the	wchar_t and enumeration types (see
Sections 3.9.1(5) and 7.2(6) of ISO/IEC 14882:2003 [1]). In both cases, from the MISRA point of
view, the underlying type of these types will be simple and hence the possibility of confusion will be
minimal. Consequently, it is appropriate to adopt the MISRA C:2004 concept and terminology.
Since C++ has an explicit bool type it is not considered necessary to permit the “Boolean by
construction” concept introduced in MISRA C:2004.
Underlying type is a conceptual departure from the C++ language in which integral promotion
does not exist, and the usual arithmetic conversions are applied consistently to all integer types.
This concept is introduced because the effects of integral promotion and implicit conversions are
subtle and sometimes dangerous. Integral promotion is an unavoidable feature of the C++ language,

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

55

but the intention of these rules is that the effect of integral promotion should be neutralized
by taking no advantage of the widening that occurs with small integer operands.
The	C++	 standard	 does	 not	 explicitly	 define	how	 small	 integer	 types	would	 be	 balanced	 to	 a	
common type in the absence of integral promotion, although it does establish the principles of
value-preservation.
When adding operands of type int, the developer is obliged to ensure that the result of the operation
will not exceed a value that can be represented in type int. If the developer should fail to do so,
overflow	will	occur,	and	the	result	will	be	undefined.	It	is	the	intention	of	the	approach	described	
here that the same principle should apply when small integer operands are added; the developer
should ensure, for example, that the result of adding two unsigned chars can be represented in
an unsigned char, even though integral promotion could give rise to evaluation in a larger type.
In other words, the limitations of the underlying type of an expression should be observed, rather
than the actual type.
In general, the underlying type of an expression is determined by the type of the operand or sub-
expression that “is widest”. A compliant expression is one in which all operators notionally take
operands of this underlying type.

Underlying type of an integer literal

The numeric value “5” can be expressed as a literal constant of type int, unsigned int, long or
unsigned long	by	the	addition	(or	absence)	of	a	suitable	suffix;	but	no	suffix	is	available	to	create	a	
representation of the value of signed char, unsigned char or short	types.	This	presents	a	difficulty	
when attempting to maintain type consistency in expressions. If it is desired to assign a value
to an object of type unsigned char, then either an implicit type conversion from an integer type
must be tolerated, or else a cast must be introduced. Many would argue that to use a cast in such
circumstances serves only to reduce readability.
The same problem exists when literals are required in initializers, function arguments or arithmetic
expressions. However, the problem is largely a philosophical one associated with the aspiration to
observe the principles of strong typing.
One way of addressing this problem is to imagine that an integer literal (or an integer constant
expression made up only of literals) has a type appropriate to its magnitude and context. This type
then becomes the underlying type of the literal.
The underlying type	of	an	integer	constant	expression	is	therefore	defined	as	follows:

If the actual type of the expression is signed integral, the 1. underlying type	is	defined	as	the	
smallest signed integer type that is capable of representing its value.
If the actual type of the expression is unsigned integral, the 2. underlying type	is	defined	as	
the smallest unsigned integer type that is capable of representing its value.
In all other circumstances, the 3. underlying type	of	the	expression	is	defined	as	being	the	
same as its actual type.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

56

In a 32-bit architecture, the underlying type of an integer literal will be determined according to
its magnitude and signedness as follows:
Unsigned values

0U to 255U 8 bit unsigned
256U to 65535U 16 bit unsigned

65536U to 4294967295U 32 bit unsigned

Signed values

-2147483648 to -32769 32 bit signed
-32768 to -129 16 bit signed

-128 to 127 8 bit signed
128 to 32767 16 bit signed

32768 to 2147483647 32 bit signed

Notice that underlying type	is	an	artificial	concept.	It	does	not	in	any	way	influence	the	type	of	
evaluation	that	is	actually	performed.	The	concept	has	been	developed	simply	as	a	way	of	defining	
a safe framework in which to construct arithmetic expressions.

The cvalue expression

As a general principle, all operations in an expression should be performed in a consistent type.
Therefore, an operation evaluated in one underlying type should not be subsequently converted to
a different underlying type.
An expression that should not undergo further conversions, either implicitly or explicitly, is called
a cvalue expression. Note that the term complex expression, which was used in MISRA C:2004,
has the same meaning as cvalue in this document.

Determination of the underlying type of an expression

The following describes the mechanism for determining the underlying type of an expression.

Class type operands

If any operand has class type and an implicit conversion was performed to convert the class to a
built-in type, the underlying type shall be the type after the implicit conversion.

Bit-field operands

Bit-field objects have an underlying type equivalent to an integral type of a size determined by their
width.	For	example,	a	bit-field	with	width	n, will have the same underlying type as a fundamental
type with the same sign and width (if one exists).

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

57

Underlying type balancing

The following are conceptual replacements for the usual arithmetic conversions ([1]	§5(9)).	These	
replacements are called the underlying type conversions.

If an overloaded operator function is called, the •	 underlying type of the expression is the
underlying type of the return of the overloaded operator.
Otherwise, if either operand has •	 char type (not explicitly signed or unsigned), then the
underlying type of the expression is char type.
Otherwise, if either operand has •	 enum type then the underlying type of the expression is
enum type.
Otherwise, if either operand has pointer type, then the •	 underlying type of the expression is
pointer type.
Otherwise, if either operand has •	 bool type, then the underlying type of the expression is
bool type.
Otherwise, if both operands are integral literals (or expressions wholly comprised •	
thereof) then the underlying type of the expression is the smallest fundamental type of the
appropriate sign required to store the value of the evaluated expression. For example, the
underlying type of 120+5+3 is S16.
Otherwise, if both operands have integral type, the •	 underlying type of the expression can
be found using the following:

If the types of the operands are the same size, and either is – unsigned, the result is
unsigned.
Otherwise, the type of the result is that of the larger type. –

Otherwise,	if	one	of	the	operands	has	floating	point	type,	then	the	•	 underlying type of the
expression can be found using the following:

If	one	of	the	operands	has	integral	type,	then	the	type	of	the	result	is	that	of	the	floating	 –
point type.
Otherwise, the type is the result of the larger type. –

The mechanism

Expressions	([1]	§5),	other	than	constant	integral	expressions	([1]	§5.19),	used	in	the	following	
contexts are always cvalues:

Function argument expressions;•	
Return expressions.•	

Similarly, unless listed below:
Binary expressions are not •	 cvalues and their underlying type is the result of applying the
underlying type conversions.
The other unlisted expressions are not •	 cvalues and have the underlying type of the
operation.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

58

Primary expressions ([1] §5.1)

literal
The underlying type of an integral literal is the smallest fundamental type of the appropriate sign
required to store its value. For example, the underlying type of the literal 128 is S16. The result is
not a cvalue.

(expression)
A parenthesized expression is a cvalue if the expression is a cvalue. The underlying type is the
underlying type of the expression.

Postfix expressions ([1] §5.2)

postfix-expression ++
postfix-expression --

The result is a cvalue expression whose underlying type is that of the postfix-expression.

postfix-expression [expression]
The result is not a cvalue. The underlying type of the result is the underlying type of the array
element.

postfix-expression (expression-listopt)
The result is not a cvalue. The underlying type of the result is the underlying type of the function
return type. For brevity, this pattern is to apply to all function call syntaxes.

simple-type-specifier (expression-listopt)
The result is not a cvalue. The underlying type of the result is the underlying type of simple-type-
specifier.

dynamic_cast < type-id > (expression)
static_cast < type-id > (expression)
reinterpret_cast < type-id > (expression)
const_cast < type-id > (expression)

The result is not a cvalue. The underlying type of the result is the underlying type of type-id.

Unary expressions ([1] §5.3)

++ cast-expression
-- cast-expression
~ cast-expression
- cast-expression

The result is a cvalue expression whose underlying type is that of the cast-expression.

! cast-expression
The result is a cvalue expression whose underlying type is bool.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

59

Explicit type conversions ([1] §5.4)

(type-id) cast-expression
The result is not a cvalue expression. Its underlying type is that of type-id.

Multiplicative operators ([1] §5.6)

multiplicative-expression * pm-expression
multiplicative-expression / pm-expression
multiplicative-expression % pm-expression

The result is a cvalue expression whose underlying type	 is	 as	 defined	 by	 the	underlying type
conversions.

Additive operators ([1] §5.7)

additive-expression + multiplicative-expression
The result is a cvalue expression whose underlying type	 is	 as	 defined	 by	 the	underlying type
conversions.

additive-expression - multiplicative-expression
The result is a cvalue expression. Normally, the underlying type	of	the	result	is	as	defined	by	the	
underlying type conversions; however, where both operands have pointer type, the underlying
type of the result is ptrdiff_t.

Shift operators ([1] §5.8)

shift-expression << additive-expression
shift-expression >> additive-expression

The result is a cvalue expression. The underlying type of the result is the underlying type of the
shift-expression.

Relational operators ([1] §5.9)

relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

The result is a cvalue expression whose underlying type is bool.

Equality operators ([1] §5.10)

equality-expression == relational-expression
equality-expression != relational-expression

The result is a cvalue expression whose underlying type is bool.

Bitwise AND operator ([1] §5.11)

and-expression & equality-expression
The result is a cvalue expression whose underlying type	 is	 as	 defined	 by	 the	underlying type
conversions.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

60

Bitwise exclusive OR operator ([1] §5.12)

exclusive-or-expression ^ and-expression
The result is a cvalue expression whose underlying type	 is	 as	 defined	 by	 the	underlying type
conversions.

Bitwise inclusive OR operator ([1] §5.13)

inclusive-or-expression | exclusive-or-expression
The result is a cvalue expression whose underlying type	 is	 as	 defined	 by	 the	underlying type
conversions.

Logical AND operator ([1] §5.14)

logical-and-expression && inclusive-or-expression
This is a cvalue expression whose underlying type is bool.

Logical OR operator ([1] §5.15)

logical-or-expression || logical-and-expression
This is a cvalue expression whose underlying type is bool.

Conditional operator ([1] §5.16)

logical-or-expression ? expression : assignment-expression
This is a cvalue expression whose underlying type	is	defined	by	the	underlying type conversions
applied to the expression and assignment-expression.

Assignment operators ([1] §5.17)

logical-or-expression assignment-operator assignment-expression
assignment-operator: one of
 = *= /= %= += -= >>= <<= &= ^= |=

This is a cvalue expression whose underlying type is the underlying type of the logical-or-
expression.

Comma operator ([1] §5.18)

expression , assignment-expression
This is a cvalue expression whose underlying type is the underlying type of the assignment-
expression.

Constant expressions ([1] §5.19)

The result is not a cvalue expression. The underlying type for a constant expression “e” with a
value “v” will have the same signedness as “e”, and a magnitude given by the underlying type of
a single integer-literal with the same value as “v”.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

61

Rule 5–0–1 (Required) The value of an expression shall be the same under any
order of evaluation that the standard permits.

[Unspecified	5(4),	Undefined	5(4)]
Rationale

Apart from a few operators (notably &&, ||, ?: and , (comma)) the order in which sub-expressions
are	evaluated	is	unspecified	and	can	vary.	This	means	that	no	reliance	can	be	placed	on	the	order	
of evaluation of sub-expressions and, in particular, no reliance can be placed on the order in which
side effects occur. Those points in the evaluation of an expression at which all previous side
effects can be guaranteed to have taken place are called “sequence points”. Sequence points and
side effects are described in Section 1.9(7) of ISO/IEC 14882:2003 [1].
Note that the “order of evaluation” problem is not solved by the use of parentheses, as this is not
a precedence issue.

Example

The following notes give some guidance on how dependence on order of evaluation may occur,
and therefore may assist in adopting the rule.

increment or decrement operators•	
As an example of what can go wrong, consider

x = b[i] + i++;

This will give different results depending on whether b[i] is evaluated before i++ or
vice versa. The problem could be avoided by putting the increment operation in a separate
statement. For example:

x = b[i] + i;
i++;

function arguments•	
The	order	of	evaluation	of	function	arguments	is	unspecified.

x = func(i++, i);

This will give different results depending on which of the function’s two parameters is
evaluated	first.
function pointers•	
If a function is called via a function pointer there shall be no dependence on the order in
which function-designator and function arguments are evaluated.

p->task_start_fn (p++);

function calls•	
Functions may have additional effects when they are called (e.g. modifying some global
data). Dependence on order of evaluation could be avoided by invoking the function prior
to the expression that uses it, making use of a temporary variable for the value.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

62

For example
x = f(a) + g(a);

could be written as
x = f(a);
x += g(a);

As an example of what can go wrong, consider an expression to take two values off a stack,
subtract	the	second	from	the	first,	and	push	the	result	back	on	the	stack:

push(pop() - pop());

This will give different results depending on which of the pop() function calls is evaluated
first	(because	pop() has side effects).
nested assignment statements•	
Assignments nested within expressions cause additional side effects. The best way to avoid
any possibility of this leading to a dependence on order of evaluation is not to embed
assignments within expressions.
For example, the following is not recommended:

y = 4;
x = y = y++; // It is undefined whether the final value of y
 // is 4 or 5.

accessing a volatile•	
The volatile	 type	qualifier	 is	provided	in	C++	to	denote	objects	whose	value	can	change	
independently of the execution of the program (for example an input register). If an object
of	volatile	 qualified	 type	 is	 accessed	 this	may	 change	 its	 value.	C++	compilers	will	 not	
optimize out reads of a volatile. In addition, as far as a C++ program is concerned, a read of
a volatile has a side effect (changing the value of the volatile).
It will usually be necessary to access volatile data as part of an expression, which then means
there may be dependence on order of evaluation. Where possible, though, it is recommended
that volatiles only be accessed in simple assignment statements, such as the following:

volatile uint16_t v;
// ...
x = v;

The rule addresses the order of evaluation problem with side effects. Note that there may also be
an issue with the number of times a sub-expression is evaluated, which is not covered by this rule.
This can be a problem with function invocations where the function is implemented as a macro.
For example, consider the following function-like macro and its invocation:

#define MAX(a, b) (((a) > (b)) ? (a) : (b))
// ...
z = MAX(i++, j);

The	definition	 evaluates	 the	first	 parameter	 twice	 if	a > b but only once if a	 ≤	b. The macro
invocation may thus increment i either once or twice, depending on the values of i and j.
It	should	be	noted	that	magnitude-dependent	effects,	such	as	those	due	to	floating-point	rounding,	
are	also	not	addressed	by	this	rule.	Although	the	order	in	which	side	effects	occur	is	undefined,	the	
result	of	an	operation	is	otherwise	well-defined	and	is	controlled	by	the	structure	of	the	expression.	
In the following example, f1 and f2	are	floating-point	variables;	F3, F4 and F5 denote expressions
with	floating-point	types.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

63

f1 = F3 + (F4 + F5);
f2 = (F3 + F4) + F5;

The addition operations are, or at least appear to be, performed in the order determined by the
position	of	the	parentheses,	i.e.	firstly	F4 is added to F5 then secondly F3 is added to give the value
of f1. Provided that F3, F4 and F5 contain no side effects, their values are independent of the order
in which they are evaluated. However, the values assigned to f1 and f2 are not guaranteed to be
the	same	because	floating-point	rounding	following	the	addition	operations	are	dependent	on	the	
values being added.

Rule 5–0–2 (Advisory) Limited dependence should be placed on C++ operator
precedence rules in expressions.

Rationale

In addition to the use of parentheses to override default operator precedence, parentheses should
also be used to emphasize it. It is easy to make a mistake with the rather complicated precedence
rules of C++, and this approach helps to avoid such errors, and helps to make the code easier to
read. However, too many parentheses can clutter the code and make it unreadable.

Example

The following guidelines are suggested for deciding when parentheses are required:
Parentheses are not required for the right-hand operand of an assignment operator unless •	
the right-hand side itself contains an assignment expression:

x = a + b; // acceptable
x = (a + b); // () not required

Parentheses are not required for the operand of a unary operator:•	
x = a * -1; // acceptable
x = a * (-1); // () not required

Otherwise, the operands of binary and ternary operators shall be •	 cast-expressions (see
Section 5.4(2) of ISO/IEC 14882:2003 [1]) unless all the operators in the expression are
the same.

x = a + b + c; // acceptable, but care needed
x = f (a + b, c); // no () required for a + b
x = (a == b) ? a : (a – b);
if (a && b && c) // acceptable
x = (a + b) – (c + d);
x = (a * 3) + c + d;
x = static_cast< uint16_t > (a) + b; // no need for cast

Even if all operators are the same, parentheses may be used to control the order of •	
operation. Some operators (e.g. addition and multiplication) that are associative in algebra
are not necessarily associative in C++. Similarly, integer operations involving mixed
types (prohibited by several rules) may produce different results because of the integral
promotions. The following example written for a 16-bit implementation demonstrates
that addition is not associative and that it is important to be clear about the structure of an
expression:

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

64

uint16_t a = 10U;
uint16_t b = 65535U;
uint32_t c = 0U;
uint32_t d;

d = (a + b) + c; // d is 9; a + b wraps modulo 65536
d = a + (b + c); // d is 65545
// this example also deviates from several other rules

Note that Rule 5–2–1 is a special case of this rule applicable solely to the logical operators, &&
and ||.

Rule 5–0–3 (Required) A cvalue expression shall not be implicitly converted to
a different underlying type.

Rationale

In order to ensure all operations in an expression are performed in the same underlying type, an
expression	defined	as	a	cvalue shall not undergo further implicit conversions.

Example
void f ()
{
 int32_t s32;
 int8_t s8;

 s32 = s8 + s8; // Example 1 –
 // Non-compliant
 s32 = static_cast < int32_t > (s8) + s8; // Example 2 - Compliant
 s32 = s32 + s8; // Example 3 - Compliant
}

In Example 1, the addition operation is performed with an underlying type of int8_t and the result
is converted to an underlying type of int32_t.
In Examples 2 and 3, the addition is performed with an underlying type of int32_t and therefore
no underlying type conversion is required.

Rule 5–0–4 (Required) An implicit integral conversion shall not change the
signedness of the underlying type.

Rationale

Some signed to unsigned conversions may lead to implementation-defined behaviour. This
behaviour may not be consistent with developer expectations.

Example
void f()
{
 int8_t s8;
 uint8_t u8;

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

65

 s8 = u8; // Non-compliant
 u8 = s8 + u8; // Non-compliant
 u8 = static_cast< uint8_t > (s8) + u8; // Compliant
}

Rule 5–0–5 (Required) There shall be no implicit floating-integral conversions.

[Undefined	4.9(1)]
Rationale

Conversions	from	floating	point	to	integral	types	discard	information,	and	may	lead	to	undefined
behaviour	if	the	floating-point	value	cannot	be	represented	in	the	integral	type.
Conversions	from	integral	types	to	floating	point	types	may	not	result	in	an	exact	representation,	
which may not be consistent with developer expectations.

Example
void f ()
{
 float32_t f32;
 int32_t s32;

 s32 = f32; // Non-compliant
 f32 = s32; // Non-compliant
 f32 = static_cast< float32_t > (s32); // Compliant
}

Rule 5–0–6 (Required) An implicit integral or floating-point conversion shall
not reduce the size of the underlying type.

[Undefined	4.9(1)]
Rationale

An implicit conversion that results in the size of a type being reduced may result in a loss of
information.

Example
void f ()
{
 int32_t s32;
 int16_t s16;

 s16 = s32; // Non-compliant
 s16 = static_cast< int16_t > (s32); // Compliant
}

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

66

Rule 5–0–7 (Required) There shall be no explicit floating-integral conversions
of a cvalue expression.

Rationale

A cast applied to the result of an expression does not change the type in which the expression is
evaluated, which may be contrary to developer expectations.
Example

// Integral to Float
void f1 ()
{
 int16_t s16a;
 int16_t s16b;
 int16_t s16c;
 float32_t f32a;

 // The following performs integer division
 f32a = static_cast< float32_t > (s16a / s16b); // Non-compliant

 // The following also performs integer division
 s16c = s16a / s16b;
 f32a = static_cast< float32_t > (s16c); // Compliant

 // The following performs floating-point division
 f32a = static_cast< float32_t > (s16a) / s16b; // Compliant
}

In the above example, the expression (s16a / s16b) is performed with an underlying type of
int16_t rather than float32_t.

// Float to Integral
void f2 ()
{
 float32_t f32a;
 float32_t f32b;
 float32_t f32c;
 int16_t s16a;

 // The following performs floating-point division
 s16a = static_cast< int16_t > (f32a / f32b); // Non-compliant

 // The following also performs floating-point division
 f32c = f32a / f32b;
 s16a = static_cast< int16_t > (f32c); // Compliant

 // The following performs integer division
 s16a = static_cast< int16_t > (f32a) / f32b; // Compliant
}

In the above example, the expression (f32a / f32b) is performed with an underlying type of
float32_t rather than int16_t.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

67

Rule 5–0–8 (Required) An explicit integral or floating-point conversion shall
not increase the size of the underlying type of a cvalue
expression.

Rationale

A cast applied to the result of an expression does not change the type in which the expression is
evaluated, which may be contrary to developer expectations.

Example
void f ()
{
 int16_t s16;
 int32_t s32;

 s32 = static_cast< int32_t > (s16 + s16); // Non-compliant
 s32 = static_cast< int32_t > (s16) + s16 ; // Compliant
}

In the above example, the expression (s16 + s16) is performed with an underlying type of
int16_t rather than int32_t.

Rule 5–0–9 (Required) An explicit integral conversion shall not change the
signedness of the underlying type of a cvalue expression.

Rationale

A signed to unsigned conversion may lead to an expression having a value inconsistent with
developer expectations.

Example
void f ()
{
 int8_t s8;
 uint8_t u8;

 s8 = static_cast< int8_t >(u8 + u8); // Non-compliant
 s8 = static_cast< int8_t >(u8)
 + static_cast< int8_t >(u8); // Compliant
}

In the above example, the expression (u8 + u8) is performed with an underlying type of
uint8_t rather than int8_t.

Rule 5–0–10 (Required) If the bitwise operators ~ and << are applied to an
operand with an underlying type of unsigned char or
unsigned short, the result shall be immediately cast to
the underlying type of the operand.

Rationale

When the operators ~ and << are applied to small integer types (unsigned char or unsigned short),
the operations are preceded by integral promotion, and the result may unexpectedly contain high
order bits.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

68

Exception

The immediate assignment of the result obtained by the use of ~ or << on an operand of type
unsigned char or unsigned short to an object of the same underlying type complies with this rule
(including use as a function argument or function return value), even though the conversion is
implicit.

Example
uint8_t port = 0x5aU;
uint8_t result_8;
uint16_t result_16;
uint16_t mode;

result_8 = (~port) >> 4; // Non-compliant

~port is 0xffa5 on a 16-bit machine but 0xffffffa5 on a 32-bit machine. In either case the value
of result is 0xfa, but 0x0a may have been expected. This danger is avoided by inclusion of the
cast as shown below:

result_8 = (static_cast< uint8_t > (~port)) >> 4 ; // Compliant

A similar problem exists when the << operator is used on small integer types and high order bits
are retained. For example:

result_16 = ((port << 4) & mode) >> 6; // Non-compliant

The value in result_16 will depend on the implemented size of an int. Addition of a cast avoids
any ambiguity.

result_16 =
 (static_cast < uint16_t > (static_cast< uint16_t > (port) << 4)
 & mode) >> 6; // Compliant

Using intermediate steps would make this clearer:
uint16_t port_16 = static_cast< uint16_t > (port);
uint16_t port_shifted = static_cast< uint16_t > (port_16 << 4);

result_16 = (port_shifted & mode) >> 6; // Compliant

Rule 5–0–11 (Required) The plain char type shall only be used for the storage
and use of character values.

[Implementation 3.9.1(1), 7.1.5.2(1)]
Rationale

The char	 type	 within	 C++	 is	 defined	 for	 use	 with	 the	 implementation	 character	 set.	 It	 is	
implementation-defined if char is signed or unsigned, and it is therefore unsuitable for use with
numeric data.
Character values consist of character literals or strings. A character set maps text characters onto
numeric values; the character value is the text itself.
Note that Rule 3–9–2 applies, so this rule also covers the char_t type.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

69

Example
char_t a = 'a'; // Compliant
char_t b = '\r'; // Compliant
char_t c = 10; // Non-compliant
char d = 'd'; // Compliant with this rule, but breaks Rule 3–9–2

See also

Rule 3–9–2, Rule 5–0–12

Rule 5–0–12 (Required) signed char and unsigned char type shall only be used
for the storage and use of numeric values.

[Implementation 3.9.1(1), 7.1.5.2(1)]
Rationale

There are three distinct char types, (plain) char, signed char and unsigned char. signed char
and unsigned char shall only be used for numeric data and plain char shall only be used for
character data. As it is implementation-defined, the signedness of the plain char type should not
be assumed.
Note that Rule 3–9–2 also applies, so the uint8_t and int8_t types are covered by this rule.

Example
 int8_t a = 'a'; // Non-compliant – explicitly signed
 uint8_t b = '\r'; // Non-compliant – explicitly unsigned
 int8_t c = 10; // Compliant
 uint8_t d = 12U; // Compliant
signed char e = 11; // Compliant with this rule, but breaks Rule 3–9–2

See also

Rule 3–9–2, Rule 5–0–11

Rule 5–0–13 (Required) The condition of an if-statement and the condition of an
iteration-statement shall have type bool.

Rationale

If an expression with type other than bool is used in the condition of an if-statement or iteration-
statement, then its result will be implicitly converted to bool. The condition expression shall contain
an explicit test (yielding a result of type bool) in order to clarify the intentions of the developer.

Exception

A condition of the form type-specifier-seq declarator is not required to have type bool.
This exception is introduced because alternative mechanisms for achieving the same effect are
cumbersome and error-prone.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

70

Example
extern int32_t * fn ();
extern int32_t fn2 ();
extern bool fn3 ();

while (int32_t * p = fn ()) // Compliant by exception
{
 // Code
}

// The following is a cumbersome but compliant example
do
{
 int32_t * p = fn ();

 if (NULL == p)
 {
 break;
 }
 // Code...
}
while (true); // Compliant

while (int32_t length = fn2 ()) // Compliant by exception
{
 // Code
}

while (bool flag = fn3 ()) // Compliant
{
 // Code
}

if (int32_t * p = fn ()) // Compliant by exception
if (int32_t length = fn2 ()) // Compliant by exception
if (bool flag = fn3 ()) // Compliant
if (u8) // Non-compliant
if (u8 && (bool_1 <= bool_2)) // Non-compliant
for (int32_t x = 10; x; --x) // Non-compliant

Rule 5–0–14 (Required) The first operand of a conditional-operator shall have
type bool.

Rationale

If an expression with type other than bool	is	used	as	the	first	operand	of	a	conditional-operator,
then its result will be implicitly converted to bool.	The	first	operand	shall	contain	an	explicit	test	
(yielding a result of type bool) in order to clarify the intentions of the developer.

Example
int32_a = int16_b ? int32_c : int32_d; // Non-compliant
int32_a = bool_b ? int32_c : int32_d; // Compliant
int32_a = (int16_b < 5) ? int32_c : int32_d; // Compliant

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

71

Rule 5–0–15 (Required) Array indexing shall be the only form of pointer
arithmetic.

Rationale

Array indexing is the only acceptable form of pointer arithmetic, because it is clearer and hence
less error prone than pointer manipulation. This rule bans the explicit calculation of pointer values.
Array	indexing	shall	only	be	applied	to	objects	defined	as	an	array	type.
Any explicitly calculated pointer value has the potential to access unintended or invalid memory
addresses. Pointers may go out of bounds of arrays or structures, or may even point to effectively
arbitrary locations.

Exception

The increment/decrement operators may be used on iterators implemented by pointers to an array.

Example
template < typename IterType >
uint8_t sum_values (IterType iter, IterType end)
{
 uint8_t result = 0;

 while (iter != end)
 {
 result += *iter;
 ++iter; // Compliant by exception
 }

 return result;
}

void my_fn (uint8_t * p1, uint8_t p2[])
{
 uint8_t index = 0;
 uint8_t * p3;
 uint8_t * p4;

 *p1 = 0;
 ++index;
 index = index + 5;

 p1 = p1 + 5; // Non-compliant – pointer increment
 p1[5] = 0; // Non-compliant – p1 was not declared as array
 p3 = &p1[5]; // Non-compliant – p1 was not declared as array

 p2[0] = 0;
 p2[index] = 0; // Compliant
 p4 = &p2[5]; // Compliant
}

uint8_t a1[16];
uint8_t a2[16];

my_fn (a1, a2);
my_fn (&a1[4], &a2[4]);

uint8_t a[10];
uint8_t * p;

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

72

p = a;
*(p + 5) = 0; // Non-compliant
p[5] = 0; // Compliant

sum_values (&a1[0], &a1[16]);

See also

Rule 0–3–1, Rule 5–0–16

Rule 5–0–16 (Required) A pointer operand and any pointer resulting from
pointer arithmetic using that operand shall both
address elements of the same array.

[Undefined	5.7(5)]
Rationale

This rule applies to expressions of the form:
integer_expression + pointer_expression•	
pointer_expression + integer_expression•	
pointer_expression - integer_expression•	
++pointer_expression•	
pointer_expression++•	
--pointer_expression•	
pointer_expression--•	
pointer_expression [integer_expression]•	

where pointer_expression is a pointer to an array element.
It is undefined behaviour if the result obtained from one of the above expressions is not a pointer
to an element of the array pointed to by pointer_expression or an element one beyond the end
of that array.

Example
void f1 (const int32_t * a1)
{
 int32_t a2[10];

 const int32_t * p1 = &a1 [1]; // Non-compliant – a1 not an array
 int32_t * p2 = &a2 [10]; // Compliant
 int32_t * p3 = &a2 [11]; // Non-compliant
}

void f2 ()
{
 int32_t b;
 int32_t c [10];

 f1 (&b);
 f1 (c);
}

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

73

See also

Rule 5–0–15

Rule 5–0–17 (Required) Subtraction between pointers shall only be applied to
pointers that address elements of the same array.

[Undefined	5.7(6)]
Rationale

This rule applies to expressions of the form:
pointer_expression_1 - pointer_expression_2

where pointer_expression_1 and pointer_expression_2 are pointers to array elements.
It is undefined behaviour if pointer_expression_1 and pointer_expression_2 do not point to
elements of the same array or the element one beyond the end of that array.

Example
void f1 ()
{
 int32_t a1[10];
 int32_t a2[10];

 int32_t * p1 = &a1 [1];
 int32_t * p2 = &a2 [10];
 int32_t diff;

 diff = p1 - a1; // Compliant
 diff = p2 - a2; // Compliant
 diff = p1 - p2; // Non-compliant
}

Rule 5–0–18 (Required) >, >=, <, <= shall not be applied to objects of pointer
type, except where they point to the same array.

Rationale

Attempting to make comparisons between pointers will produce undefined behaviour if the two
pointers do not point to the same object.
Note: it is permissible to address the next element beyond the end of an array, but accessing this
element is not allowed.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

74

Example

void f1 ()
{
 int32_t a1[10];
 int32_t a2[10];

 int32_t * p1 = a1;

 if (p1 < a1) // Compliant
 {
 }

 if (p1 < a2) // Non-compliant
 {
 }
}

Rule 5–0–19 (Required) The declaration of objects shall contain no more than
two levels of pointer indirection.

Rationale

Use of more than two levels of indirection can seriously impair the ability to understand the
behaviour of the code, and therefore should be avoided.

Example
typedef int8_t * INTPTR;

struct s {
 int8_t * s1; // Compliant
 int8_t ** s2; // Compliant
 int8_t *** s3; // Non-compliant
};

struct s * ps1; // Compliant
struct s ** ps2; // Compliant
struct s *** ps3; // Non-compliant

int8_t ** (*pfunc1)(); // Compliant
int8_t ** (**pfunc2)(); // Compliant
int8_t ** (***pfunc3)(); // Non-compliant
int8_t *** (**pfunc4)(); // Non-compliant

void function(int8_t * par1, // Compliant
 int8_t ** par2, // Compliant
 int8_t *** par3, // Non-compliant
 INTPTR * par4, // Compliant
 INTPTR * const * const par5, // Non-compliant
 int8_t * par6[], // Compliant
 int8_t ** par7[]) // Non-compliant
{

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

75

 int8_t * ptr1; // Compliant
 int8_t ** ptr2; // Compliant
 int8_t *** ptr3; // Non-compliant
 INTPTR * ptr4; // Compliant
 INTPTR * const * const ptr5; // Non-compliant
 int8_t * ptr6[10]; // Compliant
 int8_t ** ptr7[10]; // Compliant
}

Explanation of types

par1•	 and ptr1 are of type pointer to int8_t.
par2•	 and ptr2 are of type pointer to pointer to int8_t.
par3•	 and ptr3 are of type pointer to a pointer to a pointer to int8_t. This is three levels
and is non-compliant.
par4•	 and ptr4 are expanded to a type of pointer to a pointer to int8_t.
par5•	 and ptr5 are expanded to a type of const pointer to a const pointer to a pointer to
int8_t. This is three levels and is non-compliant.
par6•	 is of type pointer to pointer to int8_t because arrays are converted to a pointer to
the initial element of the array.
ptr6•	 is of type pointer to array of int8_t.
par7•	 is of type pointer to pointer to pointer to int8_t because arrays are converted to a
pointer to the initial element of the array. This is three levels and is non-compliant.
ptr7•	 is of type array of pointer to pointer to int8_t. This is compliant.

Rule 5–0–20 (Required) Non-constant operands to a binary bitwise operator
shall have the same underlying type.

Rationale

Using operands of the same underlying type	documents	that	it	is	the	number	of	bits	in	the	final	
(promoted and balanced) type that are used, and not the number of bits in the original types of the
expression.

Example
uint8_t mask = ~(0x10);
uint16_t value;

value ^= mask; // Non-compliant

The intent may have been to invert all bits except for bit 5, but the top 8 bits will not have been
inverted.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

76

Rule 5–0–21 (Required) Bitwise operators shall only be applied to operands of
unsigned underlying type.

[Implementation 5.8(3)]
Rationale

Bitwise operations (~, <<, <<=, >>, >>=, &, &=, ^, ^=, | and |=) are not normally meaningful
on signed integers or enumeration constants. Additionally, an implementation-defined result is
obtained if a right shift is applied to a negative value.

Example
if ((uint16_a & int16_b) == 0x1234U) // Non-compliant
if ((uint16_a | uint16_b) == 0x1234U) // Compliant
if (~int16_a == 0x1234U) // Non-compliant
if (~uint16_a == 0x1234U) // Compliant

Postfix expressions6.5.2

Rule 5–2–1 (Required) Each operand of a logical && or || shall be a
postfix-expression.

Rationale

The effect of this rule is to require that operands are appropriately parenthesized. Parentheses are
important in this situation both for readability of code and for ensuring that the behaviour is as the
developer intended.

Exception

Where an expression consists of either a sequence of only logical && or a sequence of only logical
||, extra parentheses are not required.

Example
if (x == 0 && ishigh) // Non-compliant
if ((x == 0) && ishigh) // Compliant
if (x || y || z) // Compliant by exception,
 // if x, y and z bool
if (x || y && z) // Non-compliant
if (x || (y && z)) // Compliant
if (x && !y) // Non-compliant
if (x && (!y)) // Compliant
if (is_odd(y) && x) // Compliant

if ((x > c1) && (y > c2) && (z > c3)) // Compliant -
 // exception
if ((x > c1) && (y > c2) || (z > c3)) // Non-compliant
if ((x > c1) && ((y > c2) || (z > c3))) // Compliant as
 // extra() used

Note that this rule is a special case of Rule 5–0–2.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

77

Rule 5–2–2 (Required) A pointer to a virtual base class shall only be cast to a
pointer to a derived class by means of dynamic_cast.

[Undefined	5.2.9(5,	8)]
Rationale

Casting from a virtual base to a derived class, using any means other than dynamic_cast has
undefined behaviour. The behaviour for dynamic_cast	is	defined.

Example
class B { ... };
class D: public virtual B { ... };

D d;
B *pB = &d;
D *pD = static_cast<D*>(pB); // Non-compliant - undefined behaviour
D *pD2 = dynamic_cast<D*>(pB); // Compliant, but pD2 may be NULL
D & D3 = dynamic_cast<D&>(*pB); // Compliant, but may throw an exception

Rule 5–2–3 (Advisory) Casts from a base class to a derived class should not be
performed on polymorphic types.

Rationale

A downcast occurs when a class type is converted to another class type that is derived from that
first	class.
Polymorphism enables strong abstraction between the interface and implementation of a
hierarchy. Explicit casts bypass this layer of abstraction resulting in higher levels of coupling and
dependency.

Example
class Colour { /* ... */ };
void setColour (Colour const &);

class Obj
{
public:
 virtual bool hasColour () const = 0;
 virtual Colour getColour () const = 0;
};

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

78

class ObjWithColour : public Obj
{
public:
 virtual bool hasColour () const
 {
 return true;
 }
 virtual Colour getColour () const
 {
 return m_colour;
 }
private:
 Colour m_colour;
};

void badPrintObject (Obj const & obj)
{
 ObjWithColour const * pObj =
 dynamic_cast<ObjWithColour const*>(&obj); // Non-compliant
 if (0 != pObj)
 {
 setColour (pObj->getColour ());
 }
}

void goodPrintObject (Obj const & obj)
{
 if (obj.hasColour ())
 {
 setColour (obj.getColour ());
 }
}

The function badPrintObject now requires knowledge of how objects in the Obj hierarchy
are	structured.	In	the	future,	the	hierarchy	may	be	changed	so	that	objects	are	split	into	specific	
colours,	and	any	clients	dependent	on	 the	colour	will	 then	have	 to	be	modified	 to	 include	 this	
change. Clients using virtual functions however, will remain unchanged.

Rule 5–2–4 (Required) C-style casts (other than void casts) and functional
notation casts (other than explicit constructor calls)
shall not be used.

Rationale

C-style (cast notation), and functional notation casts that do not invoke a converting constructor
are capable of performing casts between unrelated types.
Exception

A C-style cast to void may be used to signify that the return value for a non-void function call is
being ignored (see Rule 0–1–7).

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

79

Example
class A
{
public:
 explicit A(int32_t);
};

int32_t g ()
{

 return 7;
}

void f ()
{
 A const a1 = A(10); // Compliant
 A * a2 = (A*)(&a1); // Non-compliant
 A * a3 = const_cast<A*>(&a1); // Compliant, but breaks Rule 5–2–5
 (void)g (); // Compliant by exception
}

In the above example, the C-style cast from a1 to a non-const pointer is stronger than necessary.
If the type of a1 is changed at some future date, then the cast may continue to compile.

See also

ISO/IEC	14882:2003	[1]	§5.2.3,	§5.4

Rule 5–2–5 (Required) A cast shall not remove any const or volatile
qualification from the type of a pointer or reference.

[Undefined	7.1.5.1(4,	7)]
Rationale

Removal of the const or volatile	qualification	may	not	meet	developer	expectations	as	it	may	lead	
to undefined behaviour.

Example
void f (const char_t * p)
{
 *const_cast< char_t * >(p) = '\0'; // Non-compliant
}

int main ()
{
 f ("Hello World!");
}

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

80

Rule 5–2–6 (Required) A cast shall not convert a pointer to a function to any
other pointer type, including a pointer to function type.

[Undefined	5.2.10(6),	Unspecified	5.2.10(6)]
Rationale

Conversion of a function pointer to a non-function pointer type causes undefined behaviour.
Undefined behaviour may arise if a function call is made using a pointer that is the result of a
function pointer conversion.

Example
void f (int32_t)
{
 reinterpret_cast< void (*)() >(&f); // Non-compliant
 reinterpret_cast< void * >(&f); // Non-compliant
}

Rule 5–2–7 (Required) An object with pointer type shall not be converted to an
unrelated pointer type, either directly or indirectly.

[Unspecified	5.2.10(7)]
Rationale

The	result	of	converting	from	a	pointer	to	an	unrelated	type	is	unspecified.

Example
struct S
{
 int32_t i;
 int32_t j;
};

class C
{
public:
 int32_t i;
public:
 int32_t j;
 virtual ~C ();
};

void f (S * s)
{
 C * c = reinterpret_cast< C * >(s); // Non-compliant
 int32_t i = reinterpret_cast< int32_t >(s); // Compliant, but
 // breaks Rule 5–2–9
 C * d = reinterpret_cast< C * >(i); // Non-compliant
 S * e = reinterpret_cast< S * >(i); // Compliant, but
 // breaks Rule 5–2–8
}

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

81

Rule 5–2–8 (Required) An object with integer type or pointer to void type shall
not be converted to an object with pointer type.

[Unspecified	5.2.10(7)]
Rationale

In general, converting from an integral type or a pointer to void type to a pointer to an object leads
to unspecified behaviour.

Example
struct S
{
 int32_t i;
 int32_t j;
};

void f (void * v, int32_t i)
{
 S * s1 = reinterpret_cast< S * >(v); // Non-compliant
 S * s2 = reinterpret_cast< S * >(i); // Non-compliant
}

Rule 5–2–9 (Advisory) A cast should not convert a pointer type to an integral
type.

[Implementation 5.2.10(4, 5)]
Rationale

The size of integer that is required when a pointer is converted to an integer is implementation-
defined. Casting between a pointer and an integer type should be avoided where possible, but may
be	unavoidable	when	addressing	memory	mapped	registers	or	other	hardware	specific	features.
Note	that	C++	does	not	permit	a	pointer	to	be	converted	to	any	floating	type.

Example
struct S
{
 int32_t i;
 int32_t j;
};

void f (S * s)
{
 int32_t p = reinterpret_cast< int32_t >(s); // Non-compliant
}

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

82

Rule 5–2–10 (Advisory) The increment (++) and decrement (--) operators
should not be mixed with other operators in an
expression.

Rationale

The use of increment and decrement operators in combination with other arithmetic operators is
not recommended, because:

It	can	significantly	impair	the	readability	of	the	code.•	
It introduces additional side effects into a statement, with the potential for •	 undefined
behaviour.

It is safer to use these operators in isolation from any other arithmetic operators.

Example

A statement such as the following is non-compliant:
u8a = ++u8b + u8c--; // Non-compliant

The following sequence is clearer and therefore safer:
++u8b;
u8a = u8b + u8c;
u8c--;

See also

ISO/IEC	14882:2003	[1]	§5.2.6,	§5.3.2

Rule 5–2–11 (Required) The comma operator, && operator and the || operator
shall not be overloaded.

Rationale

Overloaded versions of the comma and logical conjunction operators have the semantics of
function calls whose sequence point and ordering semantics are different from those of the built-
in versions. It may not be clear at the point of use that these operators are overloaded, and so
developers may be unaware which semantics apply.

Example
#include "util.h"

class A
{
public:
 UtilType getValue ();
 UtilType setValue (UtilType const &);
};

void f1 (A & a1, A & a2)
{
 a1.getValue () && a2.setValue (0); // Short circuiting may occur
}

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

83

bool operator && (UtilType const &,
 UtilType const &); // Non-compliant

void f2 (A & a1, A & a2)
{
 a1.getValue () && a2.setValue (0); // Both operands evaluated
}

If the type returned by getValue and setValue has an overloaded operator &&, then both getValue
and setValue will be evaluated.

See also

ISO/IEC	14882:2003	[1]	§5.14,	§5.15,	§5.18

Rule 5–2–12 (Required) An identifier with array type passed as a function
argument shall not decay to a pointer.

Rationale

When a variable with array type decays to a pointer, its bounds are lost.
If a design requires arrays of different lengths, then a class should be used to encapsulate the array
objects and so ensure that the dimensionality is maintained.

Example
void f1(int32_t p[10]);
void f2(int32_t *p);
void f3(int32_t (&p)[10]);

void b ()
{
 int32_t a[10];
 f1(a); // Non-compliant - Dimension "10" lost due to array to
 // pointer conversion.
 f2(a); // Non-compliant - Dimension "10" lost due to array to
 // pointer conversion.
 f3(a); // Compliant - Dimension preserved.
}

Unary expressions6.5.3

Rule 5–3–1 (Required) Each operand of the ! operator, the logical && or the
logical || operators shall have type bool.

Rationale

The use of operands with types other than bool with these operators is unlikely to be meaningful
(or intended). This rule allows the detection of such uses, which often occur because the logical
operators (&&, || and !) can be easily confused with the bitwise operators (&, | and ~).

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

84

Example
if ((a < b) && (c < d)) // Compliant
if (1 && (c < d)) // Non-compliant
if ((a < b) && (c + d)) // Non-compliant

if (u8_a && (c + d)) // Non-compliant
if (!0) // Non-compliant –
 // also breaks other rules
if (!ptr) // Non-compliant
if (!false) // Compliant with this rule,
 // but breaks others

See also

ISO/IEC	14882:2003	[1]	§5.14,	§5.15

Rule 5–3–2 (Required) The unary minus operator shall not be applied to an
expression whose underlying type is unsigned.

Rationale

Applying the unary minus operator to an expression of type unsigned int, unsigned long or
unsigned long long generates a result of type unsigned int, unsigned long or unsigned long long
respectively and is not a meaningful operation. Applying unary minus to an operand of smaller
unsigned integer type may generate a meaningful signed result due to integral promotion, but this
is not considered good practice.

Example

On a machine with a 32-bit int type:
uint8_t a = -1U; // Non-compliant – a is assigned 255
int32_t b = -a; // Non-compliant – b is assigned -255
uint32_t c = 1U;
int64_t d = -c; // Non-compliant – d is assigned MAX_UINT

See also

See Section 6.5.0 for a description of underlying type.

Rule 5–3–3 (Required) The unary & operator shall not be overloaded.
[Undefined	5.3.1(4)]

Rationale

Taking the address of an object of incomplete type where the complete type contains a user
declared operator & leads to undefined behaviour.

Example
// A.h
class A
{
public:
 A * operator & (); // Non-compliant
};

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

85

// f1.cc
class A;

void f (A & a)
{
 &a; // uses built-in operator &
}

// f2.cc
#include "A.h"

void f2 (A & a)
{
 &a; // use user-defined operator &
}

See also

ISO/IEC	14882:2003	[1]	§5.3.1(4)

Rule 5–3–4 (Required) Evaluation of the operand to the sizeof operator shall
not contain side effects.

Rationale

A possible programming error in C++ is to apply the sizeof operator to an expression and expect
the expression to be evaluated. However, the expression is not evaluated as sizeof only acts on
the type of the expression. To avoid this error, sizeof shall not be used on expressions that would
contain side effects if they were used elsewhere, as the side effects will not occur.

Exception

An operand of the form sizeof (i) where i is volatile is permitted.

Example
 int32_t i;
 int32_t j;
volatile int32_t k;

j = sizeof(i = 1234); // Non-compliant - j is set to the sizeof the
 // type of i which is an int32_t.
 // i is not set to 1234.
j = sizeof (k); // Compliant by exception.

See also

ISO/IEC	14882:2003	[1]	§3.2(2)

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

86

Shift operators6.5.8

Rule 5–8–1 (Required) The right hand operand of a shift operator shall lie
between zero and one less than the width in bits of the
underlying type of the left hand operand.

[Undefined	5.8(1)]
Rationale

It is undefined behaviour if the right hand operand is negative, or greater than or equal to the width
of the left hand operand.
If, for example, the left hand operand of a left-shift or right-shift is a 16-bit integer, then it is
important to ensure that this is shifted only by a number between 0 and 15 inclusive.
There are various ways of ensuring that this rule is followed. The simplest is for the right hand
operand to be a constant (whose value can then be statically checked). Use of an unsigned integer
type will ensure that the operand is non-negative, so then only the upper limit needs to be checked
(dynamically at run time or by review). Otherwise both limits will need to be checked.

Example
u8a = (uint8_t) (u8a << 7); // Compliant
u8a = (uint8_t) (u8a << 9); // Non-compliant
u16a = (uint16_t)((uint16_t) u8a << 9); // Compliant

See also

See Section 6.5.0 for a description of underlying type.

Logical AND operator6.5.14

Rule 5–14–1 (Required) The right hand operand of a logical && or || operator
shall not contain side effects.

Rationale

There are some situations in C++ where certain parts of expressions may not be evaluated. If these
sub-expressions contain side effects then those side effects may or may not occur, depending on
the values of other sub expressions.
The operators which can lead to this problem are && and || where the evaluation of the right-
hand operand is conditional on the value of the left-hand operand. The conditional evaluation of
the right-hand operand of one of the logical operators can easily cause problems if the developer
relies on a side effect occurring.

Example
if (ishigh && (x == i++)) // Non-compliant
...
if (ishigh && (x == f(x))) // Only acceptable if f(x) is
 // known to have no side effects

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

87

The operations that cause side effects are accessing a volatile object, modifying an object,
modifying	a	file,	or	calling	a	function	that	does	any	of	those	operations,	which	cause	changes	in	
the state of the execution environment of the calling function.

See also

Rule 5–2–11
ISO/IEC	14882:2003	[1]	§3.2(2),	§5.14,	§5.15

Assignment operators6.5.17

Rule 5–17–1 (Required) The semantic equivalence between a binary operator
and its assignment operator form shall be preserved.

Rationale

Where a set of operators is overloaded, it is important that the interactions between the operators
meet developer expectations.

Example
class A
{
public:
 A& operator= (A const & rhs);
};

A & operator += (A const & lhs, A const & rhs);
A const operator + (A const & lhs, A const & rhs);

void f (A a1, A a2)
{
 A x;
 x = a1 + a2; // Example 1
 a1 += a2; // Example 2

 if (x == a1) // Example 3
 {
 }
}

For a built-in type, the results of Example 1 and Example 2 will be the same, therefore the condition
in Example 3 should always be true. This should also be true for overloaded versions of these
operators.

Comma operator6.5.18

Rule 5–18–1 (Required) The comma operator shall not be used.

Rationale

Use of the comma operator is generally detrimental to the readability of code, and the same effect
can be achieved by other means.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

88

Example
f ((1, 2), 3); // Non-compliant – how many parameters?

Constant expressions6.5.19

Rule 5–19–1 (Advisory) Evaluation of constant unsigned integer expressions
should not lead to wrap-around.

Rationale

Unsigned	integer	expressions	do	not	strictly	overflow,	but	instead	wrap	around	in	a	modular	way.	
Any	constant	unsigned	integer	expressions	that	in	effect	“overflow”	will	not	be	detected	by	the	
compiler. Although there may be good reasons at run-time to rely on the modular arithmetic
provided by unsigned integer types, the reasons for using it at compile-time to evaluate a constant
expression are less obvious. Any instance of an unsigned integer constant expression wrapping
around is therefore likely to indicate a programming error.
This rule applies equally to all phases of the translation process. Constant expressions that the
compiler chooses to evaluate at compile time are evaluated in such a way that the results are identical
to those that would be obtained by evaluation on the target, with the exception of those appearing in
conditional preprocessing directives. For such directives, the usual rules of arithmetic apply but the
int and unsigned int types behave instead as if they were long and unsigned long respectively.

Example

On a machine with a 16-bit int type and a preprocessor using a 32-bit long type:
#define START 0x8000
#define END 0xFFFF
#define LEN 0x8000

#if ((START + LEN) > END)
#error Buffer Overrun // OK as START and LEN are unsigned long
#endif

#if (((END – START) – LEN) < 0)
 #error Buffer Overrun
 // Not OK: subtraction result wraps around to 0xFFFFFFFF
#endif

// contrast the above START + LEN with the following
void fn ()
{
 if ((START + LEN) > END)
 {
 error ("Buffer overrun");
 // Not OK: START + LEN wraps around to 0x0000 due to unsigned int
 // arithmetic
 }
}

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

89

Statements6.6
Expression statement6.6.2

Rule 6–2–1 (Required) Assignment operators shall not be used in sub-
expressions.

Rationale

Assignments used in a sub-expression add an additional side effect to that of the full expression,
potentially resulting in a value inconsistent with developer expectations. In addition, this helps to
avoid getting = and == confused.

Example
x = y;
x = y = z; // Non-compliant
if (x != 0) // Compliant
{
 foo ();
}

bool b1 = x != y; // Compliant
bool b2;
b2 = x != y; // Compliant

if ((x = y) != 0) // Non-compliant
{
 foo ();
}

if (x = y) // Non-compliant
{
 foo ();
}

if (int16_t i = foo ()) // Compliant
{
}

Rule 6–2–2 (Required) Floating-point expressions shall not be directly or
indirectly tested for equality or inequality.

Rationale

The	 inherent	nature	of	floating-point	 types	 is	 such	 that	comparisons	of	equality	will	often	not	
evaluate to true, even when they are expected to. Also, the behaviour of such a comparison cannot
be predicted before execution, and may well vary from one implementation to another.
The	 recommended	 method	 for	 achieving	 deterministic	 floating-point	 comparisons	 is	 to	 write	
a library that implements the comparison operations. The library should take into account the
floating-point	 granularity	 (std::numeric_limits<float>::epsilon()) and the magnitude of the
numbers being compared.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

90

Example

The result of the test in the following code is unpredictable:
float32_t x, y;

if (x == y) // Non-compliant
if (x == 0.0f) // Non-compliant

An indirect test is equally problematic and is also prohibited by this rule:
if ((x <= y) && (x >= y)) // Non-compliant

if ((x < y) || (x > y)) // Non-compliant

The following is better, but only if the magnitudes are appropriate:
if (fabs (x – y) <=
 std::numeric_limits<float>::epsilon()) // Compliant

Rule 6–2–3 (Required) Before preprocessing, a null statement shall only occur
on a line by itself; it may be followed by a comment,
provided that the first character following the null
statement is a white-space character.

Rationale

Null statements should not normally be included deliberately, but where they are used, they shall
appear on a line by themselves. White-space characters may precede the null statement to preserve
indentation. If a comment follows the null statement, then at least one white-space character shall
separate the null statement from the comment. The use of a white-space character to separate the
null statement from any following comment is required on the grounds that it provides an important
visual cue to reviewers. Following this rule enables a static checking tool to warn of null statements
appearing on a line with other text, which would normally indicate a programming error.

Example
while ((port & 0x80) == 0)
{
 ; // wait for pin - Compliant
 /* wait for pin */ ; // Non-compliant, comment before ;
 ;// wait for pin – Non-compliant, no white-space char after ;
}

Compound statement6.6.3

Rule 6–3–1 (Required) The statement forming the body of a switch, while,
do ... while or for statement shall be a compound
statement.

Rationale

If the bodies of these statements are not compound statements, then errors can occur if a developer
fails to add the required braces when attempting to change a single statement body to a multi-
statement body.
Requiring that the body of a switch statement or a while, do ... while or for loop shall be a compound
statement (enclosed within braces) ensures that these errors cannot arise.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

91

Example
for (i = 0; i < N_ELEMENTS; ++i)
{ // Compliant
 buffer [i] = 0; // Even a single statement must
 // be in braces
}

for (i = 0; i < N_ELEMENTS; ++i); // Non-compliant
 // Accidental single null statement
{
 buffer [i] = 0;
}

while (new_data_available) // Non-compliant
 process_data (); // Incorrectly not enclosed in braces
 service_watchdog (); // Added later but, despite the appearance
 // (from the indent) it is actually not
 // part of the body of the while statement,
 // and is executed only after the loop has
 // terminated

Note that this example assumes a particular style for the layout of compound statements and their
enclosing	braces.	This	style	is	not	mandated,	but	a	style	should	be	defined	within	the	style	guide	
for the project.

Selection statements6.6.4

Rule 6–4–1 (Required) An if (condition) construct shall be followed by
a compound statement. The else keyword shall be
followed by either a compound statement, or another if
statement.

Rationale

If the bodies of these constructs are not compound statements, then errors can occur if a developer
fails to add the required braces when attempting to change a single statement body to a multi-
statement body.
Requiring that the body of these constructs shall be a compound statement (enclosed within braces)
ensures that these errors cannot arise.

Example
if (test1); // Non-compliant - accidental single null statement
{
 x = 1;
}

if (test1)
{
 x = 1; // Compliant - a single statement must be in braces
}

else if (test2) // Compliant - no need for braces between else and if
{
 x = 0; // Compliant – a single statement must be in braces
}

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

92

else // Non-compliant
 x = 3; // This was (incorrectly) not enclosed in braces
 y = 2; // This line was added later but, despite the
 // appearance (from the indent) it is actually not
 // part of the else, and is executed unconditionally

Note that this example assumes a particular style for the layout of compound statements and their
enclosing	braces.	This	style	is	not	mandated,	but	a	style	should	be	defined	within	the	style	guide	
for the project.

Rule 6–4–2 (Required) All if … else if constructs shall be terminated with an
else clause.

Rationale

When an if statement is followed by one or more else if	statements	then	the	final	else if shall be followed
by an else statement. In the case of a simple if statement the else statement need not be included.
The	final	else statement, which should either take appropriate action or contain a suitable comment
as to why no action is taken, is defensive programming.

Example

For example this code is a simple if statement:
if (x < 0)
{
 log_error(3);
 x = 0;
}
// else not needed

Whereas the following code demonstrates an if, else if construct
if (x < 0)
{
 log_error (3);
 x = 0;
}
else if (y < 0)
{
 x = 3;
}
else // this else clause is required, even if the
{ // developer expects this will never be reached
 // No change in value of x
}

Rule 6–4–3 (Required) A switch statement shall be a well-formed switch
statement.

A well-formed switch statement conforms to the following syntax rules, which are additional
to	 the	 C++	 standard	 syntax	 rules.	 All	 syntax	 rules	 not	 defined	 below	 are	 as	 defined	 in	
ISO/IEC 14882:2003 [1].

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

93

switch-statement:
 switch (condition) { case-label-clause-list default-label-clauseopt }
case-label-clause-list:
 case-label case-clauseopt
 case-label-clause-list case-label case-clauseopt

case-label:
 case constant-expression :
case-clause:
 case-block-seqopt break ;
 case-block-seqopt throw assignment-expressionopt ;
 { statement-seqopt break ; }
 { statement-seqopt throw assignment-expressionopt ; }
default-label-clause:
 default-label default-clause
default-label:
 default :
default-clause:
 case-clause
case-block:
 expression_statement
 compound_statement
 selection_statement
 iteration_statement
 try_block
case-block-seq:
 case-block
 case-block-seq case-block

The following statements, which are permitted by C++, are explicitly not included within the
MISRA C++ switch syntax rules. Note, however, that they are permitted within the compound
statements forming the body of a switch-clause.

labelled_statement
jump_statement
declaration_statement

The following terms are also used within the text of the rules:
switch-label Either a case-label or default-label.
case-clause The code between any two switch-labels.
default-clause The code between the default-label and the end of the switch statement.
switch-clause Either a case-clause or a default-clause.

Rationale

The syntax for the switch statement in C++ is weak, allowing complex, unstructured behaviour.
The previous text describes the syntax for switch	statements	as	defined	by	MISRA	C++.	This,	and	
the associated rules, imposes a simple and consistent structure on to the switch statement.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

94

Example
switch (x)
{
case 0:
 ...
 break; // break is required here
case 1: // empty clause, break not required
case 2:
 break; // break is required here
default: // default clause is required
 break; // break is required here, in case a future
 // modification turns this into a case clause
}

Rule 6–4–4 (Required) A switch-label shall only be used when the most closely-
enclosing compound statement is the body of a switch
statement.

Rationale

A switch-label can be placed anywhere within the statements that form the body of a switch
statement, potentially leading to unstructured code. To prevent this from happening, the scope
of a case-label or default-label shall be the compound statement forming the body of a switch
statement. All case-clauses and the default-clause shall be at the same scope.

Example
switch (x)
{
case 1: // Compliant
 if (...)
 {
 case 2: // Non-compliant
 DoIt ();
 }
 break;
default:
 break;
}

Rule 6–4–5 (Required) An unconditional throw or break statement shall
terminate every non-empty switch-clause.

Rationale

If a developer fails to add a break statement to the end of a switch-clause,	then	control	flow	“falls”	
into any following switch-clause. Whilst this is sometimes intentional, it is often an error.
To ensure that such errors can be detected, the last statement in every switch-clause shall be a
break statement, or if the switch-clause is a compound statement, then the last statement in the
compound statement shall be a break statement.
A special case exists if the switch-clause is empty, as this allows groups of clauses requiring
identical statements to be created.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

95

Example
switch (x)
{
case 0:
 break; // Compliant
case 1: // Compliant - empty drop through
case 2: // allows a group
 break; // Compliant
case 3:
 throw; // Compliant
case 4:
 a = b;
 // Non-compliant - non empty drop through
default:
 ; // Non-compliant – default must also have "break"
}

Rule 6–4–6 (Required) The final clause of a switch statement shall be the
default-clause.

Rationale

The	requirement	for	a	final	default-clause is defensive programming. This clause shall either take
appropriate action, or else contain a suitable comment as to why no action is taken.

Exception

If the condition of a switch statement is of type enum, and all the enumerators are listed in case
labels, then the default-clause is not required as the rules associated with enums are intended to
ensure that the enum cannot be assigned values outside of its set of enumerators. Note that it may
still be appropriate to include a default-clause for the purpose of defensive programming.

Example
switch (int16)
{
case 0:
 break;
case 1:
case 2:
 break;
 // Non-compliant – default clause is required.
 }

enum Colours { RED, BLUE, GREEN } colour;

switch (colour)
{
 case RED:
 break;
 case GREEN:
 break;
 // Non-compliant – default clause is required.
}

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

96

switch (colour)
{
 case RED:
 break;
 case BLUE:
 break;
 case GREEN:
 break;
 // Compliant – exception allows no default in this case
}

Rule 6–4–7 (Required) The condition of a switch statement shall not have bool
type.

Rationale

An if statement gives a clearer representation for a Boolean choice.

Example
switch (x == 0) // Non-compliant
{
 ...
}

Rule 6–4–8 (Required) Every switch statement shall have at least one case-
clause.

Rationale

A switch statement with no case-clauses is redundant.

Example
switch (x)
{
 // Non-compliant
default:
 break;
}

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

97

Iteration statements6.6.5

The for statement

ISO/IEC	14882:2003	[1]	§6.5.3	states:
The for statement

for (for-init-statement conditionopt ; expressionopt) statement
is equivalent to:

{
 for-init-statement
 while (conditionopt)
 {
 statement
 expressionopt ;
 }
}

So, it can be seen that the for loop in C++ is in effect an alternative syntax for a while loop.
Because of this, it is possible that an unbounded loop can be created in error. The following rules
are designed to reduce the risk of this occurring.
The	rules	make	use	of	the	following	definitions:

A •	 loop-control-variable is any variable occurring in for-init-statement, condition or
expression.
A •	 loop-counter is a loop-control-variable that is:

Initialized in, or prior to, (a) for-init-statement; and
an operand to a relational operator in (b) condition; and
modified	in	(c) expression.

Note that iterators are also valid loop-counters. As an iterator may be a class type, any operator
referenced in the following rules may be an overloaded operator.

Rule 6–5–1 (Required) A for loop shall contain a single loop-counter which
shall not have floating type.

Rationale

A for loop without exactly one loop-counter is simply a while loop. If this is the desired behaviour,
then a while loop is more appropriate.

Example
y = 0;

for (x = 0; x < y; x = y++) // Non-compliant

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

98

Rule 6–5–2 (Required) If loop-counter is not modified by -- or ++, then, within
condition, the loop-counter shall only be used as an
operand to <=, <, > or >=.

Rationale

When the loop-counter	is	modified	using	an	operator	other	than	-- or ++, then == and != shall not be
used, as loop termination may not occur, which may be inconsistent with developer expectations.

Example
for (i = 1; i != 10; i += 2) // Non-compliant
for (i = 1; i <= 10; i += 2) // Compliant
for (i = 1; i != 10; ++i) // Compliant

Rule 6–5–3 (Required) The loop-counter shall not be modified within condition
or statement.

Rationale

Modification	of	the	loop-counter other than in expression leads to a badly-formed for loop.

Example
bool modify (int32_t * pX)
{
 *pX++;

 return (*pX < 10);
}

for (x = 0; modify (&x);) // Non-compliant
{
}

for (x = 0; x < 10;)
{
 x = x * 2; // Non-compliant
}

Rule 6–5–4 (Required) The loop-counter shall be modified by one of: --, ++,
-=n, or +=n; where n remains constant for the duration
of the loop.

Rationale

This helps to ensure deterministic loop termination. The other for loop rules mean that the
modification	can	only	take	place	within	expression.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

99

Example
for (x = 0; x < 10; ++x) // Compliant
for (T x = thing.start();
 x != thing.end();
 ++x) // Compliant
for (x = 0; x < 10; x += 1) // Compliant
for (x = 0; x < 10; x += n) // Compliant if n is not modified
 // within the body of the loop.
for (x = 0; x < 10; x += fn ()) // Non-compliant

Rule 6–5–5 (Required) A loop-control-variable other than the loop-counter shall
not be modified within condition or expression.

Rationale

loop-control-variables are either the loop-counter,	or	flags	used	for	early	loop	termination.	The	
code	is	easier	to	understand	if	these	are	not	modified	within	condition or expression.
Note that it is possible for a loop-control-variable with volatile	qualification	to	change	value	(or	
have it changed) outside statement	due	to	the	volatile	nature	of	the	object.	Such	modification	does	
not break this rule.

Example
for (x = 0; (x < 10) && !bool_a; ++x)
{
 if (...)
 {
 bool_a = true; // Compliant
 }
}

bool test_a (bool * pB)
{
 *pB = ... ? true : false;
 return *pB;
}

for (x = 0;
 (x < 10) && test_a (&bool_a);
 ++x) // Non-compliant

volatile bool status;

for (x = 0; (x < 10) && status; ++x) // Compliant

for (x = 0; x < 10; bool_a = test(++x)) // Non-compliant

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

100

Rule 6–5–6 (Required) A loop-control-variable other than the loop-counter
which is modified in statement shall have type bool.

Rationale

loop-control-variables are typically used to terminate a for loop early. The code is easier to
understand	if	this	is	done	with	the	use	of	Boolean	values	(flags).

Example
for (x = 0; (x < 10) && (u8a != 3U); ++x) // Non-compliant
{
 uint8_a = fn ();
}

for (x = 0; (x < 10) && flag; ++x) // Compliant
{
 u8a = fn ();
 flag = u8a != 3U;
}

Jump statements6.6.6

Rule 6–6–1 (Required) Any label referenced by a goto statement shall be
declared in the same block, or in a block enclosing the
goto statement.

Rationale

Unconstrained use of goto	can	lead	to	programs	that	are	extremely	difficult	to	comprehend,	analyse	
and, for C++, can also lead to the program exhibiting unspecified behaviour.
However, in many cases a total ban on goto	requires	the	introduction	of	flags	to	ensure	correct	
control	flow,	and	it	is	possible	that	these	flags	may	themselves	be	less	transparent	than	the	goto
they replace.
Therefore, the restricted use of goto is allowed where that use will not lead to semantics contrary
to developer expectations. Jumping in to nested blocks is prohibited as it may lead to complex
flow	graphs.

Example
void f1 ()
{
 int32_t j = 0;

 goto L1;
 for (j = 0; j < 10 ; ++j)
 {
L1: // Non-compliant
 j;
 }
}

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

101

void f2 ()
{
 for (int32_t j = 0; j < 10 ; ++j)
 {
 for (int32_t i = 0; i < 10; ++i)
 {
 goto L1;
 }
 }
L1: // Compliant
 f1 ();
}

Rule 6–6–2 (Required) The goto statement shall jump to a label declared later
in the same function body.

Rationale

Unconstrained use of goto	can	lead	to	programs	that	are	extremely	difficult	to	comprehend,	analyse	
and, for C++, can also lead to the program exhibiting unspecified behaviour.
However, in many cases a total ban on goto	requires	the	introduction	of	flags	to	ensure	correct	
control	flow,	and	it	is	possible	that	these	flags	may	themselves	be	less	transparent	than	the	goto
they replace.
Therefore, the restricted use of goto is allowed where that use will not lead to semantics contrary
to developer expectations. “Back” jumps are prohibited as they can be used to create iterations
without	using	the	well-defined	iteration	statements	supplied	by	the	core	language.

Example
void f ()
{
 int32_t j = 0;

L1:
 ++j;
 if (10 == j)
 {
 goto L2; // Compliant
 }
 goto L1; // Non-compliant
L2:
 ++j;
}

Rule 6–6–3 (Required) The continue statement shall only be used within a well-
formed for loop.

Rationale

Over-use of the continue statement can lead to unnecessary complexity within the code. This
complexity may impede effective testing as extra logic must be tested. The required testing may
not	be	achievable	due	to	control	flow	dependencies.
A well-formed for loop	is	one	which	satisfies	Rule	6–5–1	to	Rule	6–5–6.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

102

Example
void fn ()
{
 for (int32_t i = 0 ; i != 10; ++i)
 {
 if ((i % 2) == 0)
 {
 continue; // Compliant
 }
 // ...
 }

 int32_t j = -1;
 for (int32_t i = 0 ; i != 10 && j != i; ++i)
 {
 if ((i % 2) == 0)
 {
 continue; // Non-compliant – loop is not well-formed
 }
 // ...

 ++j;
 }
}

Rule 6–6–4 (Required) For any iteration statement there shall be no more than
one break or goto statement used for loop termination.

Rationale

Restricting the number of exits from a loop is done in the interests of good structured programming.
One break or goto statement is acceptable in a loop since this allows, for example, for dual outcome
loops or optimal coding.

Example
for (int32_t i = 0; i < 10; i++)
{
 if (...)
 {
 break; // Compliant
 }
}

while (...)
{
 if (...)
 {
 break; // Compliant
 }
}

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

103

for (int32_t i = 0; i < 10; i++)
{
 if (...)
 {
 break;
 }
 else if (...)
 {
 break; // Non-compliant – second jump from loop
 }
 else
 {
 ...
 }
}

while (...)
{
 if (...)
 {
 break;
 }
 if (...)
 {
 break; // Non-compliant – second jump from loop
 }
}

Rule 6–6–5 (Required) A function shall have a single point of exit at the end of
the function.

Rationale

This is required by IEC 61508 [12], as part of the requirements for a modular approach.

Exception

A function implementing a function-try-block is permitted to have multiple points of exit, one for
the try block and one for each catch handler.
Throwing an exception that is not caught within the function is not considered a point of exit for
this rule.

Example
void fn (void)
{
 if (...)
 {
 return; // Non-compliant
 }

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

104

 try
 {
 if (...)
 {
 throw (1); // Compliant by exception
 }
 }

 catch (int32_t)
 {
 throw; // Compliant by exception
 }
 return; // Non-compliant
}

void fn2 (void)
{
 try
 {
 return; // Non-compliant
 }
 catch (...)
 {
 return; // Non-compliant
 }
}

void fn3 (void) try
{
 return; // Compliant by exception
}
catch (int32_t)
{
 return; // Compliant by exception
}
catch (...)
{
 return; // Compliant by exception
}

See also

IEC 61508 [12] Part 3 Table B.9

Declarations6.7
Specifiers6.7.1

Rule 7–1–1 (Required) A variable which is not modified shall be const qualified.

Rationale

If	a	variable	does	not	need	to	be	modified,	then	it	shall	be	declared	with	const	qualification	so	that	
it	cannot	be	modified.	A	non-parametric	variable	will	then	require	its	initialization	at	the	point	of	
declaration. Also, future maintenance cannot accidentally modify the value.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

105

Example
void b (int32_t *);

int32_t f (int32_t * p1, // Non-compliant
 int32_t * const p2, // Compliant
 int32_t * const p3) // Compliant
{
 *p1 = 10;
 *p2 = 10;
 b(p3);

 int32_t i = 0; // Non-compliant

 return i;
}

See also

ISO/IEC	14882:2003	[1]	§7.1.5.1

Rule 7–1–2 (Required) A pointer or reference parameter in a function shall be
declared as pointer to const or reference to const if the
corresponding object is not modified.

Rationale

This	rule	leads	to	greater	precision	in	the	definition	of	the	function	interface.	The	const	qualification	
shall be applied to the object pointed to, not to the pointer, since it is the object itself that is being
protected.

Exception

This	rule	does	not	apply	if	the	parameter	object	is	modified	by	any	of	the	functions	in	a	set	of	
overriding functions.

Example
void myfunc(int16_t * param1,
 const int16_t * param2,
 int16_t * param3,
 int16_t * const param4)
// param1: Addresses an object which is modified - Compliant
// param2: Addresses an object which is not modified – Compliant
// param3: Addresses an object which is not modified – Non-compliant
// param4: Addresses an object which is not modified – Non-compliant
{
 *param1 = *param2 + *param3 + *param4;
 // Data at address param3 and param4 have not been changed
}

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

106

Enumeration declarations6.7.2

Rule 7–2–1 (Required) An expression with enum underlying type shall only
have values corresponding to the enumerators of the
enumeration.

[Unspecified	7.2(9)]
Rationale

It is unspecified behaviour if the evaluation of an expression with enum underlying type yields a
value which does not correspond to one of the enumerators of the enumeration.
Additionally, other rules in this standard assume that objects of enum type only contain values
corresponding to the enumerators. This rule ensures the validity of these assumptions.
One way of ensuring compliance when converting to an enumeration is to use a switch statement.

Example
enum1 convert (int16_t v)
{
 enum1 result = enum1_ERROR;

 switch (v)
 {
 case 0: { result = enum1_E1; break; }
 case 1: { result = enum1_E2; break; }
 default: { throw (ENUM_ERROR); break; }
 }
 return result;
}

Namespaces6.7.3

Rule 7–3–1 (Required) The global namespace shall only contain main,
namespace declarations and extern "C" declarations.

Rationale

Declaring names into appropriate namespaces reduces the names found during lookup, helping to
ensure that the names found meet developer expectations.

Exception

The	types	defined	for	compliance	with	Rule	3–9–2	may	also	be	in	the	global	namespace.

Example
void f1 (int32_t); // Non-compliant

int32_t x1; // Non-compliant

namespace
{
 void f2 (int32_t); // Compliant
 int32_t x2; // Compliant
}

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

107

namespace MY_API
{
 void b2 (int32_t); // Compliant
 int32_t x2; // Compliant
}

int32_t main () // Compliant
{
}

Rule 7–3–2 (Required) The identifier main shall not be used for a function
other than the global function main.

[Implementation 3.6.1(2, 3)]
Rationale

main	(or	its	equivalent)	is	usually	the	entry	point	to	the	program	and	is	the	only	identifier	which	
must be in the global namespace. The use of main for other functions may not meet developer
expectations.

Example
int32_t main () // Compliant
{
}

namespace
{
 int32_t main () // Non-compliant
 {
 }
}

namespace NS
{
 int32_t main () // Non-compliant
 {
 }
}

Rule 7–3–3 (Required) There shall be no unnamed namespaces in header files.

Rationale

An unnamed namespace will be unique within each translation unit. Any declarations appearing
in an unnamed namespace in a header will refer to different entities in each translation unit, which
may not be consistent with developer expectations.

Example
// Header.hpp
namespace // Non-compliant
{
 extern int32_t x;
}

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

108

// File1.cpp
#include "Header.hpp"

namespace
{
 int32_t x;
}

void fn_a (void)
{
 x = 24;
}

// File2.cpp
#include "Header.hpp"

namespace
{
 int32_t x;
}

void fn_b (void)
{
 fn_a ();
 if (x == 24) // This x will not have been initialized.
 {
 }
}

Rule 7–3–4 (Required) using-directives shall not be used.

Rationale

using-directives add additional scopes to the set of scopes searched during name lookup. All
identifiers	in	these	scopes	become	visible,	increasing	the	possibility	that	the	identifier	found	by	
the compiler does not meet developer expectations.
using-declarations	or	fully	qualified	names	restricts	the	set	of	names	considered	to	only	the	name	
explicitly	specified,	and	so	are	safer	options.

Example
namespace NS1
{
 int32_t i1;
 int32_t j1;
 int32_t k1;
}

using namespace NS1; // Non-compliant

namespace NS2
{
 int32_t i2;
 int32_t j2;
 int32_t k2;
}

using NS2::j2; // Compliant

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

109

namespace NS3
{
 int32_t i3;
 int32_t j3;
 int32_t k3;
}

void f ()
{
 ++i1;
 ++j2;
 ++NS3::k3;
}

In the above, i1 is found via the using-directive. However, as a result of the using-directive, j1 and
k1 are also visible. The using-declaration allows j2 to be found while i2 and k2 remain hidden.
Finally,	the	qualified	name	NS3::k3 unambiguously refers to k3, and i3, j3 and k3 remain hidden
to normal lookup.

See also

ISO/IEC	14882:2003	[1]	§7.3.4

Rule 7–3–5 (Required) Multiple declarations for an identifier in the same
namespace shall not straddle a using-declaration for
that identifier.

Rationale

The	set	of	identifiers	introduced	by	a	using-declaration does not include any declarations that may
be added by a subsequent declaration in the namespace. Any subsequent declarations will not be
found through the using-declaration, which may not be consistent with developer expectations.

Example
namespace NS1
{
 void f(uint16_t); // Example 1
}

using NS1::f;

namespace NS1
{
 void f(uint32_t); // Example 2 – Non-compliant
}

void bar()
{
 f(0U);
}

In the above example, moving the using-declaration below the second namespace would result in
Example 2 being called, as it is a better match than Example 1.

See also

ISO/IEC	14882:2003	[1]	§7.3.3

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

110

Rule 7–3–6 (Required) using-directives and using-declarations (excluding class
scope or function scope using-declarations) shall not be
used in header files.

Rationale

It is important to ensure that the order of inclusion of header files cannot affect the behaviour of
a program.

Example
// f1.h
void foo (char_t a);

namespace NS1
{
 void foo(int32_t a);
}

inline void bar ()
{
 foo (0);
}

// f2.h
namespace NS1
{
}

using namespace NS1;

// f1.cc
#include "f1.h"
#include "f2.h"

int32_t m1 ()
{
 bar (); // bar calls foo (char_t);
}

// f2.cc
#include "f2.h"
#include "f1.h"

void m2 ()
{
 bar (); // bar calls foo (int32_t);
}

In the above example, changing the order of the header files alters the meaning of the program.

See also

ISO/IEC	14882:2003	[1]	§7.3.3,	§7.3.4

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

111

The 6.7.4 asm declaration

Rule 7–4–1 (Document) All usage of assembler shall be documented.

[Implementation 7.4(1)]
Rationale

Assembly language code is implementation-defined and therefore is not portable.

Rule 7–4–2 (Required) Assembler instructions shall only be introduced using
the asm declaration.

Rationale

The asm declaration is available to all C++ implementations, allowing a consistent mechanism to
be used.
However, the parameters to asm are still implementation-defined.

Example
void Delay_a (void)
{
 asm ("NOP"); // Compliant
}

void Delay_b (void)
{
#pragma asm
 "NOP" // Non-compliant
#pragma endasm
}

Rule 7–4–3 (Required) Assembly language shall be encapsulated and isolated.

Rationale

Ensuring that assembly language code is encapsulated and isolated aids portability.
Where assembly language instructions are needed, they shall be encapsulated and isolated in
either assembler functions or C++ functions.

Example
void Delay (void)
{
 asm ("NOP"); // Compliant
}

void fn (void)
{
 DoSomething ();
 Delay (); // Assembler is encapsulated
 DoSomething ();
 asm ("NOP"); // Non-compliant
 DoSomething ();
}

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

112

Linkage specifications6.7.5

Rule 7–5–1 (Required) A function shall not return a reference or a pointer to
an automatic variable (including parameters), defined
within the function.

Rationale

Automatic variables are destroyed at the end of the function call. Returning a reference or pointer
to such a variable allows it to be used after its destruction, leading to undefined behaviour.

Example
int32_t * fn1 (void)
{
 int32_t x = 99;

 return (&x); // Non-compliant
}

int32_t * fn2 (int32_t y)
{
 return (&y); // Non-compliant
}

int32_t & fn3 (void)
{
 int32_t x = 99;

 return (x); // Non-compliant
}

int32_t & fn4 (int32_t y)
{
 return (y); // Non-compliant
}

int32_t * fn5 (void)
{
 static int32_t x = 0;

 return &x; // Compliant
}

Rule 7–5–2 (Required) The address of an object with automatic storage shall
not be assigned to another object that may persist after
the first object has ceased to exist.

Rationale

If the address of an automatic object is assigned to another automatic object of larger scope, or to a
static object, or returned from a function, then the object containing the address may exist beyond
the time when the original object ceases to exist (and its address becomes invalid).
Note that throwing a pointer to an object with automatic storage is also a violation of this rule.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

113

Example
void foobar (void)
{
 int8_t * p1;

 {
 int8_t local_auto;

 p1 = &local_auto; // Non-compliant
 }
}

Rule 7–5–3 (Required) A function shall not return a reference or a pointer
to a parameter that is passed by reference or const
reference.

Rationale

It is implementation-defined behaviour whether the reference parameter is a temporary object or
a reference to the parameter. If the implementation uses a local copy (temporary object), this will
be destroyed when the function returns. Any attempt to use such an object after its destruction will
lead to undefined behaviour.

Example
int32_t * fn1 (int32_t & x)
{
 return (&x); // Non-compliant
}

int32_t * fn2 ()
{
 int32_t i = 0;

 return fn1 (i);
}

const int32_t * fn3 (const int32_t & x)
{
 return (&x); // Non-compliant
}

int32_t & fn4 (int32_t & x)
{
 return (x); // Non-compliant
}

const int32_t & fn5 (const int32_t & x)
{
 return (x); // Non-compliant
}

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

114

Rule 7–5–4 (Advisory) Functions should not call themselves, either directly or
indirectly.

Rationale

Unbounded	recursion	is	likely	to	lead	to	a	stack	over-flow	and	may	impact	system	timings.	This	
is also the case for an iterative algorithm.

Example
int32_t fn (int32_t x)
{
 if (x > 0)
 {
 x = x * fn (x – 1); // Non-compliant
 }
 return (x);
}

// File1.cpp
int32_t fn_2 (int32_t x)
{
 if (x > 0)
 {
 x = x * fn_3 (x – 1); // Non-compliant
 }
 return (x);
}

// File2.cpp
int32_t fn_3 (int32_t x)
{
 if (x == 0)
 {
 x = x * fn_2 (x – 1); // Non-compliant
 }
 return (x);
}

Declarators6.8
General6.8.0

Rule 8–0–1 (Required) An init-declarator-list or a member-declarator-list shall
consist of a single init-declarator or member-declarator
respectively.

Rationale

Where	multiple	declarators	appear	in	the	same	declaration	the	type	of	an	identifier	may	not	meet	
developer expectations.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

115

Example
int32_t i1; int32_t j1; // Compliant
int32_t i2, *j2; // Non-compliant
int32_t *i3,
 &j3 = i2; // Non-compliant

See also

ISO/IEC	14882:2003	[1]	§9.2

Meaning of declarators6.8.3

Rule 8–3–1 (Required) Parameters in an overriding virtual function shall
either use the same default arguments as the function
they override, or else shall not specify any default
arguments.

Rationale

Default arguments are determined by the static type of the object. If a default argument is different
for a parameter in an overriding function, the value used in the call will be different when calls are
made via the base or derived object, which may be contrary to developer expectations.

Example
class Base
{
public:
 virtual void g1 (int32_t a = 0);
 virtual void g2 (int32_t a = 0);
 virtual void b1 (int32_t a = 0);
};

class Derived : public Base
{
public:

 virtual void g1 (int32_t a = 0); // Compliant - same default used
 virtual void g2 (int32_t a); // Compliant -
 // no default specified
 virtual void b1 (int32_t a = 10); // Non-compliant - different
value
};

void f(Derived& d)
{
 Base& b = d;

 b.g1 (); // Will use default of 0
 d.g1 (); // Will use default of 0
 b.g2 (); // Will use default of 0
 d.g2 (0); // No default value available to use
 b.b1 (); // Will use default of 0
 d.b1 (); // Will use default of 10
}

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

116

The default argument for g2 can only be used via the base class object and so the value used will
always be the same.

See also

ISO/IEC	14882:2003	[1]	§8.3.6(10)

Function definitions6.8.4

Rule 8–4–1 (Required) Functions shall not be defined using the ellipsis
notation.

[Undefined	5.2.2(7),	18.7(3)]
Rationale

Passing arguments via an ellipsis bypasses the type checking performed by the compiler.
Additionally, passing an argument with non-POD class type leads to undefined behaviour.
Note	 that	 the	 rule	 specifies	 “defined”	 (and	not	 “declared”)	 so	 as	 to	permit	 the	use	of	 existing	
library functions.

Example
void MyPrintf (char_t * pFormat, ...); // Non-compliant

Rule 8–4–2 (Required) The identifiers used for the parameters in a re-
declaration of a function shall be identical to those in
the declaration.

Rationale

The name given to a parameter helps document the purpose of the parameter within the function
body. If a function parameter is renamed in a subsequent re-declaration, then having different
names for the same object will probably lead to developer confusion.
Note that the rule also applies to any overriding set.

Exception

It is not a violation of this rule if the declaration or re-declaration contains an unnamed parameter.

Example
// File1
void CreateRectangle (uint32_t Height, uint32_t Width);

// File2
// Non-compliant
void CreateRectangle (uint32_t Width, uint32_t Height);

void fn1 (int32_t a);
void fn2 (int32_t);

void fn1 (int32_t b) // Non-compliant
{
}

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

117

void fn2 (int32_t b) // Compliant
{
}

Rule 8–4–3 (Required) All exit paths from a function with non-void return
type shall have an explicit return statement with an
expression.

[Undefined	6.6.3(2)]
Rationale

This expression gives the value that the function returns. The absence of a return with an expression
leads to undefined behaviour (and the compiler may not give an error).

Exception

This rule does not apply if a function exit is due to exception handling (i.e. a throw statement).

Example
int32_t fn1 (void)
{
} // Non-compliant

int32_t fn3 (int32_t x)
{
 if (x > 100)
 {
 throw 42; // Compliant by exception
 }
 return (x); // Compliant
}

Rule 8–4–4 (Required) A function identifier shall either be used to call the
function or it shall be preceded by &.

Rationale

A	function	identifier	can	implicitly	convert	to	a	pointer	to	a	function.	In	certain	contexts	this	may	
result in a well-formed program, but which is contrary to developer expectations. For example, if
the developer writes:

if (f)

then it is not clear whether the intent is to test if the address of the function is NULL or if a call to
the function f() should be made and the brackets have been unintentionally omitted. The use of
the & (address-of) operator will resolve this ambiguity.

Exception

Passing the function by reference, or assigning it to a reference object is not a violation of this rule.

Example
extern void f (void);

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

118

if (0 == f) // Non-compliant
{
 // ...
}

void (*p)(void) = f; // Non-compliant

if (0 == &f) // Compliant
{
 (f)(); // Compliant as function is called
}

void (*p)(void) = &f; // Compliant

Initializers6.8.5

Rule 8–5–1 (Required) All variables shall have a defined value before they are
used.

[Indeterminate 8.5(9)]
Rationale

The intent of this rule is that all variables shall have been written to before they are read. This does
not necessarily require initialization at declaration.
Note that according to ISO/IEC 14882:2003 [1], variables with static storage duration are
automatically initialized to zero by default, unless explicitly initialized. In practice, many
embedded environments do not implement this behaviour. Static storage duration is a property
of all variables declared with the static storage	class	specifier,	or	with	external	linkage.	Variables	
with automatic storage duration are not usually automatically initialized.
Each class constructor shall initialize all non-static members of its class.

Example
class C
{

 public:
 C () : m_a(10), m_b(7) // Compliant
 {
 }

 C (int32_t a) : m_a(a) // Non-compliant
 {
 }

 int32_t GetmB (void)
 {
 return (m_b);
 }

 private:
 int32_t m_a;
 int32_t m_b;
};

C c(5);

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

119

int main (void)
{
 if (c.GetmB() > 0) // m_b has not been initialized
 {
 }
}

Rule 8–5–2 (Required) Braces shall be used to indicate and match the structure
in the non-zero initialization of arrays and structures.

Rationale

ISO/IEC 14882:2003 [1] requires initializer lists for arrays, structures and union types to be
enclosed	in	a	single	pair	of	braces	(though	the	behaviour	if	this	is	not	done	is	undefined).	The	
rule given here goes further in requiring the use of additional braces to indicate nested structures.
This forces the developer to explicitly consider and demonstrate the order in which elements of
complex data types are initialized (e.g. multi-dimensional arrays).
The zero initialization of arrays or structures shall only be applied at the top level.
The non-zero initialization of arrays or structures requires an explicit initializer for each element.

Example

The following shows two valid ways of initializing the elements of a two dimensional array, but
the	first	does	not	adhere	to	the	rule:

int16_t y[3][2] = { 1, 2, 3, 4, 5, 6 }; // Non-compliant
int16_t y[3][2] = { { 1, 2 }, { 3, 4 }, { 5, 6 } }; // Compliant

A similar principle applies to structures, and nested combinations of structures, arrays and other
types.
Note also that all the elements of arrays or structures can be initialized (to zero or NULL) by giving
an	explicit	initializer	for	the	first	element	only.	If	this	method	of	initialization	is	chosen	then	the	
first	element	should	be	initialized	to	zero	(or	NULL), and nested braces need not be used.

// The following are compliant
int16_t a1[5] = { 1, 2, 3, 0, 0 }; // Non-zero initialization
int16_t a2[5] = { 0 }; // Zero initialization
int16_t a3[2][2] = { }; // Zero initialization

// The following are non-compliant
int16_t a4[5] = { 1, 2, 3 }; // Partial initialization
int16_t a5[2][2] = { { }, { 1, 2 } }; // Zero initialization
 // at sub-level

Rule 8–5–3 (Required) In an enumerator list, the = construct shall not be used
to explicitly initialize members other than the first,
unless all items are explicitly initialized.

Rationale

If an enumerator list is given with no explicit initialization of members, then C++ allocates a
sequence	of	integers	starting	at	zero	for	the	first	element	and	increasing	by	one	for	each	subsequent	
element.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

120

An	explicit	initialization	of	the	first	element,	as	permitted	by	the	above	rule,	forces	the	allocation	
of integers to start at the given value. When adopting this approach it is essential to ensure that
the initialization value used is small enough that no subsequent value in the list will exceed the int
storage used by enumeration constants.
Explicit initialization of all items in the list, which is also permissible, prevents the mixing of
automatic and manual allocation, which is error prone. However it is then the responsibility of the
developer to ensure that all values are in the required range, and that values are not unintentionally
duplicated.

Example

The following example assigns the same value to the green and yellow enumeration constants.
It is unclear to a reviewer if this was intentional or an error.

enum colour { red=3, blue, green, yellow=5 }; // Non-compliant

However, if all the items are explicitly initialized, then the duplicated values are acceptable as the
duplication is readily detectable by anyone reviewing the code.

enum colour { red=3, blue=4, green=5, yellow=5 }; // Compliant

Classes6.9
Member functions6.9.3

Rule 9–3–1 (Required) const member functions shall not return non-const
pointers or references to class-data.

Rationale

When an object is declared with const class type, only const member functions can be invoked on
that object. The common expectation of const member functions is that the state of the object may
not	be	modified	when	invoking	the	functions.	However,	returning	a	non-const	pointer	or	reference	
to class-data from	a	const	function	allows	a	modification	to	the	conceptual	state	of	an	object.

Example
class C
{
public:
 C (int32_t & b_) : a (new int32_t [10]), b (b_)
 {
 }

 int32_t * getA () const // Non-compliant
 // Returns non const pointer to data
 {
 return a;
 }

 int32_t * getB () const // Non-compliant
 // Returns non const pointer to data
 {
 return &b;
 }

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

121

 const int32_t * getC () const // Compliant
 // Returns const pointer to data
 {
 return &b;
 }

private:
 int32_t * a;
 int32_t & b;
};

void fn (C const & c)
{
 c.getA()[0] = 0; // Modification to conceptual state of C
 *c.getB() = 0; // Modification to conceptual state of C
 fn2 (c.getC()); // Value can be used,
 *c.getC() = 0; // but compiler will report an error here
}

Rule 9–3–2 (Required) Member functions shall not return non-const handles to
class-data.

Rationale

By implementing class interfaces with member functions the implementation retains more control
over	how	the	object	state	can	be	modified	and	helps	to	allow	a	class	to	be	maintained	without	
affecting clients. Returning a handle to class-data allows for clients to modify the state of the
object without using any interfaces.

Example
class C
{
public:
 int32_t & getA () // Non-compliant
 {
 return a;
 }
private:
 int32_t a;
};

void b (C & c)
{
 int32_t & a_ref = c.getA ();
 a_ref = 10; // External modification of private C::a
}

c.getA()	returns	a	reference	to	the	member,	which	is	then	stored	and	modified	by	a_ref. The
class, therefore, has no control over changes to its state.
Where a resource is used by the class, but is not class-data, non-const handles to this data may
be returned.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

122

class C
{
public:
 C (int32_t * shared) : m_shared (shared)
 {
 }

 int32_t * getA ()
 {
 return m_shared; // Compliant - m_shared is not class-data
 }
private:
 int32_t * m_shared;
};

Rule 9–3–3 (Required) If a member function can be made static then it shall
be made static, otherwise if it can be made const then it
shall be made const.

Rationale

Declaring a member function static or const limits its access to the non-static data members.
This	 helps	 to	 prevent	 unintentional	 modification	 of	 the	 data,	 and	 facilitates	 compliance	 with	
Rule 7–1–1.
Example

class A
{
public:
 int16_t f1 () // Non-compliant – can be const
 {
 return m_i;
 }

 int16_t f2 () // Non-compliant – can be static
 {
 return m_s;
 }
 int16_t f3 () // Compliant – cannot be const or static
 {
 return ++m_i;
 }
private:
 int16_t m_i;
 static int16_t m_s;
};

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

123

Unions6.9.5

Rule 9–5–1 (Required) Unions shall not be used.

[Implementation 3.9(4, 5)]
Rationale

The use of unions to access an object in different ways may result in the data being misinterpreted.
Therefore, this rule prohibits the use of unions for any purpose.
It is recognized nonetheless that there are situations in which the careful use of unions is desirable
in	constructing	an	efficient	implementation.	In	such	situations,	deviations	to	this	rule	are	considered	
acceptable provided that all relevant implementation-defined behaviour is documented. This might
be achieved in practice by referencing the implementation section of the compiler manuals from
the design documentation.

Example
namespace NS1
{
 // Compliant - no union
}

namespace NS2
{
 union U1 // Non-compliant – union
 {
 int32_t i;
 float32_t j;
 };
}

Bit-fields6.9.6

Rule 9–6–1 (Document) When the absolute positioning of bits representing a
bit-field is required, then the behaviour and packing of
bit-fields shall be documented.

[Implementation 9.6(1)]
Rationale

Certain	aspects	of	bit-fields	are	 implementation-defined. In particular, the developer should be
aware of the following:

It is •	 implementation-defined	whether	the	bit-fields	are	allocated	from	the	high	or	low	end	
of a storage unit (usually a byte).
It is •	 implementation-defined	whether	or	not	a	bit	field	can	overlap	a	storage	unit	boundary	
(e.g.	if	a	6-bit	bit-field	and	a	4-bit	bit-field	are	declared	in	that	order,	then	the	4-bit	bit-field	
may either start a new byte or it may use 2 bits in one byte and 2 bits in the next).

These issues are generally benign (e.g. when packing together short-length data to save storage
space),	but	they	may	lead	to	errors	if	the	absolute	position	of	the	bit-fields	is	important	(e.g.	when	
accessing hardware registers).

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

124

Provided the elements of the structure are only accessed by name, the developer need make no
assumptions	about	the	way	that	the	bit	fields	are	stored	within	the	structure.
Note	that	Rule	3–9–2	need	not	be	followed	when	defining	bit-fields,	as	their	lengths	are	explicitly	
specified.
If	the	compiler	has	a	switch	to	force	bit	fields	to	follow	a	particular	layout,	then	this	option	should	
be documented.

Example
struct message // Struct is for bit-fields only
{
 signed int little: 4; // Note: use of basic types is required
 unsigned int x_set: 1;
 unsigned int y_set: 1;
} message_chunk;

Rule 9–6–2 (Required) Bit-fields shall be either bool type or an explicitly
unsigned or signed integral type.

[Implementation 3.9.1(5), 7.1.5.2(1), 9.6(3)]
Rationale

Using int is implementation-defined	 because	 bit-fields	 of	 type	 int can be either signed or
unsigned.
The use of wchar_t	as	a	bit-field	type	is	prohibited	as	ISO/IEC	14882:2003	[1]	does	not	explicitly	
define	the	underlying	representation	as	signed	or	unsigned.

Example
struct S
{
 signed int a : 2; // Compliant
 unsigned int b : 2; // Compliant
 char c : 2; // Non-compliant
 signed char d : 2; // Compliant
 unsigned char e : 2; // Compliant
 short f : 2; // Non-compliant
 signed short g : 2; // Compliant
 unsigned short h : 2; // Compliant
 int i : 2; // Non-compliant
 bool j : 2; // Compliant
 wchar_t k : 2; // Non-compliant
 uint32_t l : 2; // Compliant
 int8_t m : 2; // Compliant
};

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

125

Rule 9–6–3 (Required) Bit-fields shall not have enum type.

[Undefined	DR	58]
Rationale

The use of enum	as	a	bit-field	type	is	prohibited	as	ISO/IEC	14882:2003	[1]	does	not	explicitly	
define	the	underlying	representation	as	signed or unsigned. It is therefore not possible to determine
the exact number of bits required to represent all values in the enumeration.

Example
struct S
{
 AnEnumType n : 2; // Non-compliant
};

Rule 9–6–4 (Required) Named bit-fields with signed integer type shall have a
length of more than one bit.

Rationale

The	 values	 which	 may	 be	 represented	 by	 a	 bit-field	 of	 length	 one	 may	 not	 meet	 developer	
expectations.	Anonymous	signed	bit-fields	of	any	length	are	allowed.

Example
struct S
{
 signed int a : 1; // Non-compliant
 signed int : 1; // Compliant
 signed int : 0; // Compliant
 signed int b : 2; // Compliant
 signed int : 2; // Compliant
};

Derived classes6.10
Multiple base classes6.10.1

Rule 10–1–1 (Advisory) Classes should not be derived from virtual bases.

Rationale

The	use	of	virtual	base	classes	can	introduce	a	number	of	undefined	and	potentially	confusing	
behaviours. The use of virtual bases is not recommended.

Example
class B {};

class D: public virtual B {}; // Non-compliant - B is a virtual base

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

126

See also

Rule 5–2–2, Rule 10–1–2, Rule 12–1–2

Rule 10–1–2 (Required) A base class shall only be declared virtual if it is used in
a diamond hierarchy.

Rationale

The	use	of	virtual	base	classes	can	introduce	a	number	of	undefined	and	potentially	confusing	
behaviours. Therefore, a base class shall only be declared virtual if that base class is to be used as
a common base class in a diamond hierarchy.

Example
class A {};

class B1: public virtual A {}; // Compliant – A is a common base for C

class B2: public virtual A {}; // Compliant – A is a common base for C

class C: public B1, B2 {};

class D: public virtual A {}; // Non-compliant

Rule 10–1–3 (Required) An accessible base class shall not be both virtual and
non-virtual in the same hierarchy.

Rationale

If a base class is both virtual and non-virtual in a multiple inheritance hierarchy then there will be
at least two copies of the base class sub-object in the derived object. This may not be consistent
with developer expectations.

Example
class A {};

class B1: public virtual A {};

class B2: public virtual A {};

class B3: public A {};

class C: public B1, B2, B3 {}; // Non-compliant –
 // C has two A sub-objects

Member name lookup6.10.2

Rule 10–2–1 (Advisory) All accessible entity names within a multiple
inheritance hierarchy should be unique.

Rationale

If the names are ambiguous, the compiler should report the name clash and not generate arbitrary
or unexpectedly resolved code. However, this ambiguity may not be obvious to a developer.
There	is	also	a	specific	concern	that	if	the	member	function	is	virtual,	resolving	the	ambiguity	by	
explicitly referencing the base class in effect removes the virtual behaviour from the function.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

127

Exception

For	 the	 purposes	 of	 this	 rule,	 visible	 function	 identifiers	 that	 form	 an	 overload	 set	 shall	 be	
considered as the same entity.

Example
class B1
{
public:
 int32_t count; // Non-compliant

 void foo (); // Non-compliant
};

class B2
{
public:
 int32_t count; // Non-compliant

 void foo (); // Non-compliant
};

class D : public B1, public B2
{
public:
 void Bar ()
 {
 ++count; // Is that B1::count or B2::count?
 foo (); // Is that B1::foo() or B2::foo()?
 }
};

In the above example, in a member function of D, the use of count or foo is ambiguous and must
be disambiguated by B1::count, B2::foo, etc.

Virtual functions6.10.3

Rule 10–3–1 (Required) There shall be no more than one definition of each
virtual function on each path through the inheritance
hierarchy.

Rationale

The main aim of this rule is clarity for maintainers and reviewers, by ensuring that the version of
a function that can be executed from any point in a class hierarchy is unambiguous.
Additionally, where classes form a diamond hierarchy, call by dominance	 ([1]	§10.3(11))	may	
occur resulting in a call to a function that is inconsistent with developer expectations. This rule
also prevents call by dominance.

Exception

Destructors may be declared virtual in multiple members of a class hierarchy.
If	a	function	is	declared	pure	and	defined	in	the	same	class,	then	that	definition	is	ignored	for	this	
rule.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

128

Example
class A
{
public:
 virtual void f1 () = 0; // f1 is pure
 virtual void f2 () = 0; // f2 is pure
 virtual void f3 () { } // f3 is not pure
 virtual void f4 () = 0; // f4 is pure

 virtual ~A(); // destructor
};

// A::f1 is both pure and has a definition
void A::f1 ()
{
}

// A::f4 is both pure and has a definition
void A::f4 ()
{
}

class B : public A
{
public:
 virtual void f2 () { } // Compliant: f2 pure in A and
 // defined in B
 virtual void f3 () { } // Non-compliant: f3 defined in A and B
 virtual void f4 () = 0; // Compliant: f4 is pure in A and in B

 virtual ~B(); // Compliant: destructor
};

// Compliant by Exception - f4 defined in A but also declared pure in A
void B::f4 ()
{
}

class C : public B
{
public:
 virtual void f1 () { } // Compliant: f1 defined in A and C
 // but was pure in A
 virtual void f2 () { } // Non-compliant f2: defined in B and C
 // and not declared pure in B
 virtual void f4 () { } // Compliant by Exception: f4 defined in A
 // and B but also declared pure in A and B
};

class D : public C
{
public:
 virtual void f1 () { } // Non-compliant f1: defined in C and D
 // as well as A
 virtual ~D(); // Compliant: destructor
};

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

129

// Call by dominance example
class V
{
public:
 virtual void foo ()
 {
 }
};

class B1 : public virtual V
{
public:
 virtual void foo () // Non-compliant
 {
 }
};

class B2 : public virtual V
{
public:
 void f1 ()
 {
 foo(); // V::foo would appear to be the only
 // candidate to be called here
 }
};

class D : public B1, public B2
{
public:
 void f2 ()
 {
 f1();
 }
};

B2 b2;

b2.f1(); // calls V::foo by normal inheritance rules

D d;

d.f2(); // calls B2::f1 which now calls B1::foo
 // "by dominance"
d.f1(); // also calls B1::foo "by dominance"

Rule 10–3–2 (Required) Each overriding virtual function shall be declared with
the virtual keyword.

Rationale

Declaring overriding virtual functions with the virtual keyword removes the need to check the
base class to determine whether a function is virtual.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

130

Example
class A
{
public:
 virtual void g();
 virtual void b();
};

class B1 : public A
{
public:
 virtual void g(); // Compliant - explicitly declared "virtual"
 void b(); // Non-compliant - implicitly virtual
};

Rule 10–3–3 (Required) A virtual function shall only be overridden by a pure
virtual function if it is itself declared as pure virtual.

Rationale

Re-declaring a function as pure may not meet developer expectations.

Example
class A
{
public:
 virtual void foo () = 0; // foo declared pure
};

class B : public A
{
public:
 virtual void foo () // foo defined
 {
 }
};

class C: public B
{
public:
 virtual void foo () = 0; // Non-compliant – foo re-declared pure

};

The function foo is introduced as pure (making class A	abstract),	defined	in	class	B (making class
B concrete), then re-declared as pure (making class C abstract). As this may not meet developer
expectations, the re-declaration as pure is not allowed.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

131

Member access control6.11
General6.11.0

Rule 11–0–1 (Required) Member data in non-POD class types shall be private.

Rationale

By implementing class interfaces with member functions, the implementation retains more control
over	how	the	object	state	can	be	modified,	and	helps	to	allow	a	class	to	be	maintained	without	
affecting clients.

Example
class C
{
public:
 int32_t b; // Non-compliant
protected:
 int32_t c; // Non-compliant
private:
 int32_t d; // Compliant
};

Special member functions6.12
Constructors6.12.1

Rule 12–1–1 (Required) An object’s dynamic type shall not be used from the
body of its constructor or destructor.

[Undefined	10.4(6)]
Rationale

During	construction	and	destruction	of	an	object,	 its	final	 type	may	be	different	 to	 that	of	 the	
completely constructed object. The result of using an object’s dynamic type in a constructor or
destructor may not be consistent with developer expectations.
The dynamic type of an object is used in the following constructs:

typeid•	 on a class with a virtual function or a virtual function in a base class.
dynamic_cast•	
A virtual call to a virtual function.•	

This rule also prohibits a call being made to a pure virtual function from within a constructor or
destructor. Such calls lead to undefined behaviour.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

132

Example
class B1
{
public:
 B1 ()
 {
 typeid (B1); // Compliant, B1 not polymorphic
 }
};

class B2
{
public:
 virtual ~B2 ();
 virtual void foo ();
 B2 ()
 {
 typeid (B2); // Non-compliant
 B2::foo (); // Compliant – not a virtual call
 foo (); // Non-compliant
 dynamic_cast< B2* > (this); // Non-compliant
 }
};

Rule 12–1–2 (Advisory) All constructors of a class should explicitly call a
constructor for all of its immediate base classes and all
virtual base classes.

Rationale

This rule reduces confusion over which constructor will be used, and with what parameters.

Example
class A
{
public:
 A ()
 {
 }
};

class B : public A
{
public:
 B () // Non-compliant – benign, but should be B () : A ()
 {
 }
};

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

133

class V
{
public:
 V ()
 {
 }
 V (int32_t i)
 {
 }
};

class C1 : public virtual V
{
public:
 C1 () : V (21)
 {
 }
};

class C2 : public virtual V
{
public:
 C2 () : V (42)
 {
 }
};

class D: public C1, public C2
{
public:
 D () // Non-compliant
 {
 }
};

There would appear to be an ambiguity here, as D only includes one copy of V. Which version
of V’s constructor is executed and with what parameter? In fact, V’s default constructor is always
executed. This would be the case even if C1 and C2 constructed their bases with the same integer
parameter.
This	is	clarified	by	making	the	initialization	explicit,	as	in:

D () : C1 (), C2 (), V ()
{
}

Rule 12–1–3 (Required) All constructors that are callable with a single
argument of fundamental type shall be declared
explicit.

Rationale

The explicit keyword prevents the constructor from being used to implicitly convert from a
fundamental type to the class type.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

134

Example
class C
{
public:
 C (int32_t a) // Non-compliant
 {
 }
};

class D
{
public:
 explicit D (int32_t a) // Compliant
 {
 }
};

Copying class objects6.12.8

Rule 12–8–1 (Required) A copy constructor shall only initialize its base classes
and the non-static members of the class of which it is a
member.

[Implementation 12.8(15)]
Rationale

If a compiler implementation detects that a call to a copy constructor is redundant, then it is
permitted to omit that call, even if the copy constructor has a side effect other than to construct a
copy of the object. This is called copy elision.
It is therefore important to ensure that a copy constructor does not modify the program state as the
number	of	such	modifications	may	be	indeterminate.

Example
class A
{
public:
 A (A const & rhs)
 : m_i (rhs.m_i)
 {
 ++m_static; // Non-compliant
 }

private:
 int32_t m_i;
 static int32_t m_static;
};

int32_t A::m_static = 0;

A f ()
{
 return A ();
}

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

135

void b ()
{
 A a = f ();
}

The value that m_static has after the call to b() is implementation-defined.

Rule 12–8–2 (Required) The copy assignment operator shall be declared
protected or private in an abstract class.

Rationale

An abstract class represents the interface part of a hierarchy. Invoking the copy constructor from
the top of such a hierarchy bypasses the underlying implementation resulting in only the base sub-
objects being copied.

Example
class B1
{
public:
 B1 ();
 virtual void f() = 0;
 B1 & operator= (B1 const & rhs); // Non-compliant
 int32_t getKind () const { return kind; }

private:
 int32_t kind;
};

class D1 : public B1
{
public:
 virtual void f () { }
 D1 & operator= (D1 const & rhs);

private:
 int32_t member;
};

void f1(B1 & b1, B1 & b2)
{
 b1 = b2;
}

As the assignment operator is public, the function f1 can call the operator and so copies the base
sub-objects of b1 and b2. As the type of b1 and b2 is an abstract type, b1 and b2 must be sub-
objects, and so the information contained in the derived objects for both will not be copied.
Making the abstract copy assignment operator protected allows access from the derived classes
but not from outside the hierarchy.

class B2
{
public:
 B2 ();
 virtual void f () = 0;
 int32_t getKind () const { return kind; }

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

136

protected:
 B2 & operator= (B2 const & rhs); // Compliant

private:
 int32_t kind;
};

class D2 : public B2
{
public:
 virtual void f () { }
 D2 & operator= (D2 const & rhs);
};

void f2 (B2 & b1, B2 & b2)
{
 b1 = b2; // Compiler error will be reported
}

Making the copy assignment operator private is a common idiom used to restrict copying objects
of the class type.

Templates6.14
Template declarations6.14.5

Rule 14–5–1 (Required) A non-member generic function shall only be declared
in a namespace that is not an associated namespace.

Rationale

Argument-dependent lookup (ADL) adds additional associated namespaces to the set of scopes
searched when lookup is performed for the names of called functions. A generic function found
in one of these additional namespaces would be added to the overload set and chosen by overload
resolution, which is inconsistent with developer expectation.

Example
template <typename T>
class B
{
public:
 B operator+ (long & rhs);

 void f ()
 {
 *this + 10; // calls NS::operator+ and not
 // B<NS::A>::operator+ when B is
 // instantiated with NS::A
 }
};

namespace NS
{
 class A {
 public:
 };

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

137

 template <typename T>
 bool operator+ (T, int32_t); // Non-compliant – within associated
 // namespace
}

template class B<NS::A>;

ADL considers the namespace NS to be an associated namespace. There are three functions in the
overload set:

The built-in •	 operator+

 T operator+ (T, T);

The member •	 operator+

 B<NS::A> B<NS::A>::operator+ (long);

The specialized •	 generic function
 bool NS::operator+< B<NS::A> > (B<NS::A>, int32_t)

The conversion from the literal 10 to int32_t is a better match than that to long, and therefore
NS::operator+ is chosen rather than the member operator+, which may be inconsistent with
developer expectations.

Rule 14–5–2 (Required) A copy constructor shall be declared when there is a
template constructor with a single parameter that is a
generic parameter.

Rationale

Contrary to possible developer expectations, a template constructor will not suppress the compiler
generated copy constructor. This may lead to incorrect copy semantics for members requiring
deep copies.

Example
class A
{
public:
 A ();
 // A (A const & rhs); Example 1 - implicitly generated

 template <typename T>
 A (T const & rhs) // Example 2
 : i (new int32_t)
 {
 *i = *rhs.i;
 }

private:
 int32_t * i; // Member requires deep copy
};

void f (A const & a1)
{
 A a2 (a1); // Non-compliant - Unexpectedly uses Example 1
}

The implicitly generated copy constructor, Example 1, will be used to construct a2 from a1.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

138

Therefore, a shallow copy on the pointer member i will result in both a1.i and a2.i pointing to
the same object. Was this the intent, or was it expected that a new object would be created and
initialized?

Rule 14–5–3 (Required) A copy assignment operator shall be declared when there
is a template assignment operator with a parameter
that is a generic parameter.

Rationale

Contrary to possible developer expectations, a template assignment operator will not suppress
the compiler generated copy assignment operator. This may lead to incorrect copy semantics for
members requiring deep copies.
Example

class A
{
public:
 // A & operator= (A const & rhs) Example 1 - implicitly generated
 // {
 // i = rhs.i;
 // return *this;
 // }

 template <typename T>
 T & operator= (T const & rhs) // Example 2
 {
 if (this != &rhs) {
 delete i;
 i = new int32_t;
 *i = *rhs.i;
 }
 return *this;
 }

private:
 int32_t * i; // Member requires deep copy
};

void f (A const & a1, A & a2)
{
 a2 = a1; // Unexpectedly uses Example 1
}

The implicitly generated copy assignment operator Example 1 will be used to copy a1 to a2.
Therefore, a shallow copy on the pointer member i will result in both a1.i and a2.i pointing to
the same object. Was this the intent, or was it expected that a new object would be created and
initialized?

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

139

Name resolution6.14.6

Rule 14–6–1 (Required) In a class template with a dependent base, any name
that may be found in that dependent base shall be
referred to using a qualified-id or this->

Rationale

Using a qualified-id	 or	 prefixing	 the	 identifier	 with	 this-> ensures that the entity chosen is
consistent with developer expectations.

Example
typedef int32_t TYPE;
void g ();

template <typename T>
class B;

template <typename T>
class A : public B<T>
{
 void f1 ()
 {
 TYPE t = 0; // Non-compliant Example 1
 g (); // Non-compliant Example 2
 }

 void f2 ()
 {
 ::TYPE t1 = 0; // Compliant - explicit use global TYPE
 ::g (); // Compliant - explicit use global func

 typename B<T>::TYPE t2 = 0; // Compliant - explicit use base TYPE
 this->g (); // Compliant - explicit use base "g"
 }
};

template <typename T>
class B
{
public:
 typedef T TYPE;
 void g ();
};

template class A<int32_t>;

A conforming compiler will choose ::TYPE in Example 1, and ::g in Example 2.

Rule 14–6–2 (Required) The function chosen by overload resolution shall resolve
to a function declared previously in the translation unit.

Rationale

Argument-dependent lookup (ADL) adds additional associated namespaces to the set of scopes
searched when lookup is performed for the names of called functions. For function templates,
ADL is performed at the point of instantiation of the function template, and so it is possible that a

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

140

function declared after the template may be called.
To ensure that ADL does not take place when calling a function with a dependent argument, the
postfix-expression denoting	the	called	function	can	either	be	a	qualified	name	or	a	parenthesized	
expression.

Example
void b (int32_t);

template <typename T>
void f (T const & t)
{
 b (t); // Non-compliant - Calls NS::b declared after f
 ::b (t); // Compliant - Calls ::b
 (b) (t); // Compliant - Calls ::b
}

namespace NS
{
 struct A
 {
 operator int32_t () const;
 };

 void b (A const & a);
}

int main ()
{
 NS::A a;

 f (a);
}

Operators with dependent types may also have this problem. In order to avoid ADL in these
examples, operators should not be overloaded, or the calls should be changed to use explicit
function	call	syntax	and	a	qualified	name	or	parenthesized	expression	used,	as	above.
For example:

template <typename T>
void f (T const & t)
{
 t == t; // Non-compliant - Calls NS::operator==
 // declared after f
 ::operator ==(t, t); // Compliant - Calls built-in operator==
 (operator == <T>) (t, t); // Compliant - Calls built-in operator==
}

namespace NS
{
 struct A
 {
 operator int32_t () const;
 };

 bool operator== (A const &, A const &);
}

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

141

int main ()
{
 NS::A a;
 f (a);
}

Template instantiation and specialization6.14.7

Rule 14–7–1 (Required) All class templates, function templates, class template
member functions and class template static members
shall be instantiated at least once.

Rationale

Similar to uncalled functions, un-instantiated class and function templates are a potential source
of noise and they may be symptomatic of a more serious problem such as missing paths.
Note: Even though a given class template may be instantiated many times, it is possible that some
of its member functions are never instantiated.
See Section 3.5 for associated library issues.

Example
template < typename T >
class Sample
{
public:
 void inst_mem ()
 {
 ...
 }

 void uninst_mem () // Non-compliant
 {
 ...
 }

};

Sample<int64_t> s;
s.inst_mem (); // Call to s.inst_mem instantiates the member.
 // s.uninst_mem is not called within the program
 // and is not instantiated.

Rule 14–7–2 (Required) For any given template specialization, an explicit
instantiation of the template with the template-
arguments used in the specialization shall not render the
program ill-formed.

Rationale

An implicit template specialization does not instantiate every member of the template. Where
instantiation of a member would result in an ill-formed program it is not clear that the template
should be used with the supplied template-arguments.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

142

See Section 3.5 for associated library issues.

Example
template <typename T>
class A
{
public:
 void f1 ()
 {
 // ...
 }

 void f2 ()
 {
 T t;

 t.x = 0; // Will only work for types that have a .x member
 }
};

void b ()
{
 A<int32_t> a; // A<int32_t>::f2 is not instantiated.

 a.f1 ();
}

template class A<int32_t>; // Non-compliant - instantiation of f2
 // results in "ill-formed" program.

Rule 14–7–3 (Required) All partial and explicit specializations for a template
shall be declared in the same file as the declaration of
their primary template.

[NDR 14.5.4(1), 14.6.4.1(7), 14.7.3(6)]
Rationale

It is undefined behaviour if, for a set of template-arguments, an implicit instantiation is generated
by	the	compiler,	and	a	partial	or	explicit	specialization	is	declared	or	defined	elsewhere	 in	 the	
program that would match the set of template-arguments.

Example
// tmpl.h
template <typename T> void bad_tmpl () {}

template <typename T> void good_tmpl () {}
template <> void good_tmpl<int32_t> () {}

// tmpl.cc
#include "tmpl.h"
template <> void bad_tmpl<int32_t> () {} // Non-compliant
template <> void good_tmpl<int32_t> () {}

// f.cc
#include <tmpl.h>

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

143

void f ()
{
 bad_tmpl<int32_t> (); // implicit instantiation of primary.
 // explicit instantiation in tmpl.cc would
 // have been used if it were visible.
 good_tmpl<int32_t> (); // specialization of good_tmpl<int32_t> is
 // visible with the primary declaration.
}

Function template specialization6.14.8

Rule 14–8–1 (Required) Overloaded function templates shall not be explicitly
specialized.

Rationale

Explicit specializations will be considered only after overload resolution has chosen a best match
from the set of primary function templates. This may be inconsistent with developer expectations.

Example
template <typename T> void f (T); // overload Example 1
template <typename T> void f (T*); // overload Example 2

template <> void f<int32_t*> (int32_t*); // explicit specialization of
 // Example 1

void b (int32_t * i)
{
 f (i); // Non-compliant
 // - Calls Example 2, f<int32_t*>
}

Where a template is not overloaded with other templates, or is overloaded with non-template
functions then it can be explicitly specialized, as it is consistent with developer expectation that
the explicit specializations will only be considered if that primary template is chosen.

template <typename T> void f (T); // Example 1
template <> void f<int32_t*> (int32_t*); // Example 2

void b (int32_t * i)
{
 f (i); // Compliant
 // - Calls Example 2, f<int32_t*>
}

Rule 14–8–2 (Advisory) The viable function set for a function call should either
contain no function specializations, or only contain
function specializations.

Rationale

If a function and a specialization of a function template are deemed equivalent after overload
resolution, the non-specialized function will be chosen over the function specialization, which
may be inconsistent with developer expectations.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

144

Exception

This rule does not apply to copy constructors or copy assignment operators.

Example
void f (short); // Example 1
template <typename T> void f (T); // Example 2

void b (short s)
{
 f (s); // Non-compliant - Calls Example 1
 f (s + 1); // Non-compliant - Calls Example 2

 f<>(s); // Compliant - Explicitly calls Example 2
 f<>(s + 1); // Compliant - Explicitly calls Example 2
}

Exception handling6.15
General6.15.0

Rule 15–0–1 (Document) Exceptions shall only be used for error handling.

Rationale

The exception handling mechanism can provide an effective and clear means of handling error
conditions, particularly where a function needs to return both some desired result together with an
indication of success or failure. However, because of its ability to transfer control back up the call
tree,	it	can	also	lead	to	code	that	is	difficult	to	understand.	Hence	it	is	required	that	the	mechanism	
is only used to capture behaviour that is in some sense undesirable, and which is not expected to
be seen in normal program execution.

Example

The try...catch mechanism is an acceptable means of catching error conditions thrown locally
or in any called functions.
For	example,	a	file	reader	may	fail	in	a	number	of	different	ways:	failure	to	open	the	file,	unexpected	
or	disallowed	data	in	the	file,	insufficient	data	in	the	file,	etc.	The	requirement	to	process	data	up	to	
the point where an error is detected, then to perform some tidy up action (or return some success
indicator if no error is found), could be achieved, either using goto (undesirable for the reasons
described	in	Rule	6–6–1)	or	status	flags	and	repeated	nested	tests	to	skip	further	processing	once	
an error is detected. It is argued that the try...catch mechanism provides a clearer way of
separating the expected and exceptional behaviours.

bool ReadFile (const char *name)
{
 try
 {
 if (/* open name fails */)
 {
 throw ("failed to open file");
 }

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

145

 if (/* unexpected data */)
 {
 throw ("unexpected data found in file");
 }
 return true;
 }

 catch (const char *message)
 {
 // tidy up after failure to read
 return false;
 }
}

The following:
void fn ()
{
 try
 {
 if (x < 10)
 {
 throw (10);
 }
 // Action "A"
 }

 catch (int32_t y)
 {
 // Action "B"
 }
}

could be used as an expensive and confusing way of implementing
if (x < 10)
{
 // Action "B"
}
else
{
 // Action "A"
}

Rule 15–0–2 (Advisory) An exception object should not have pointer type.

Rationale

If an exception object of pointer type is thrown and that pointer refers to a dynamically created
object, then it may be unclear which function is responsible for destroying it, and when. This
ambiguity does not exist if the object is caught by value or reference.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

146

Example
class A
{
 // Implementation
};

void fn (int16_t i)
{
 static A a1;
 A * a2 = new A;

 if (i > 10)
 {
 throw (&a1); // Non-compliant – pointer type thrown
 }

 else
 {
 throw (a2); // Non-compliant – pointer type thrown
 }
}

Rule 15–0–3 (Required) Control shall not be transferred into a try or catch block
using a goto or a switch statement.

Rationale

A program is ill-formed if control is transferred into a try or catch block using a goto or switch
statement; however, not all compilers issue a diagnostic message.

Example
void f (int32_t i)
{
 if (10 == i)
 {
 goto Label_10; // Non-compliant
 }

 if (11 == i)
 {
 goto Label_11; // Non-compliant
 }

 switch (i)
 {
 case 1:
 try
 {
 Label_10:
 case 2: // Non-compliant – also violates switch rules
 // Action
 break;
 }

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

147

 catch (...)
 {
 Label_11:
 case 3: // Non-compliant – also violates switch rules
 // Action
 break;
 }
 break;

 default:
 {
 // Default Action
 break;
 }
 }
}

Throwing an exception6.15.1

Rule 15–1–1 (Required) The assignment-expression of a throw statement shall
not itself cause an exception to be thrown.

Rationale

If an exception is thrown when constructing the exception object, or when evaluating the assignment
expression that initializes the exception object, it is that exception that propagates in preference to
the one that was about to be thrown. This may be inconsistent with developer expectations.

Example
class E
{
 public:
 E (){ } // Assume constructor cannot cause an exception
};

try
{
 if (...)
 {
 throw E (); // Compliant – no exception thrown
 } // when constructing the object
}

// construction of E2 causes an exception to be thrown
class E2
{
 public:
 E2 ()
 {
 throw 10;
 }
};

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

148

try
{
 if (...)
 {
 throw E2 (); // Non-compliant – int exception thrown
 // when constructing the E2 object
 }
}

Rule 15–1–2 (Required) NULL shall not be thrown explicitly.

Rationale

throw(NULL) (equivalent to throw(0)) is never a throw of the null-pointer-constant and so is
only ever caught by an integer handler. This may be inconsistent with developer expectations,
particularly if the program only has handlers for pointer-to-type exceptions.

Example
try
{
 throw (NULL); // Non-compliant
}

catch (int32_t i) // NULL exception handled here
{
 // ...
}

catch (const char_t *) // Developer may expect it to be caught here
{
 // ...
}

char_t * p = NULL;
try
{
 throw (static_cast < const char_t * > (NULL)); // Compliant,
 // but breaks
 // Rule 15–0–2
 throw (p); // Compliant
}

catch (int32_t i)
{
 // ...
}

catch (const char_t *) // Both exceptions handled here
{
 // ...
}

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

149

Rule 15–1–3 (Required) An empty throw (throw;) shall only be used in the
compound-statement of a catch handler.

[Implementation 15.3(9), 15.5.1(2)]
Rationale

An empty throw re-throws the temporary object that represents an exception. Its use is intended to
enable the handling of an exception to be split across two or more handlers.
However, syntactically, there is nothing to prevent throw; being used outside a catch handler,
where there is no exception object to re-throw. This may lead to an implementation-defined
program termination.

Example
void f1 (void)
{
 try
 {
 throw (42);
 }

 catch (int32_t i) // int will be handled here first
 {
 if (i > 0)
 {
 throw; // and then re-thrown - Compliant
 }
 }
}

void g1 (void)
{
 try
 {
 f1 ();
 }

 catch (int32_t i)
 {
 // Handle re-throw from f1 ()
 // after f1's handler has done what it needs
 }
}

void f2 (void)
{
 throw; // Non-compliant
}

void g2 (void)
{
 try
 {
 throw; // Non-compliant
 }

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

150

 catch (...)
 {
 // ...
 }
}

Handling an exception6.15.3

Rule 15–3–1 (Required) Exceptions shall be raised only after start-up and
before termination of the program.

[Implementation 15.3(9), 15.5.1(2)]
Rationale

Throwing an exception during start-up or termination results in the program being terminated in
an implementation-defined manner.
Before the program starts executing the body of main, it is in a start-up phase, constructing and
initializing static objects. Similarly, after main has returned, it is in a termination phase where
static objects are being destroyed. If an exception is thrown in either of these phases it leads to the
program being terminated in an implementation-defined	manner.	Specifically	from	Section	15.3(13)	
of ISO/IEC 14882:2003 [1], if main is implemented as a function-try-block, exceptions raised
during start-up and close down are not caught by the catch block(s) of main.
This is in effect a special case of Rule 15–3–4, as there is nowhere a handler can be placed to catch
exceptions thrown during start-up or termination.

Example
class C
{
public:
 C ()
 {
 throw (0); // Non-compliant – thrown before main starts
 }
 ~C ()
 {
 throw (0); // Non-compliant – thrown after main exits
 }
};

C c; // An exception thrown in C's constructor or destructor will
 // cause the program to terminate, and will not be caught by
 // the handler in main

int main(...)
{
 try
 {
 // program code
 return 0;
 }

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

151

 // The following catch-all exception handler can only
 // catch exceptions thrown in the above program code
 catch (...)
 {
 // Handle exception
 return 0;
 }
}

See also

Rule 15–3–3, Rule 15–3–4, Rule 15–5–1, Rule 15–5–3

Rule 15–3–2 (Advisory) There should be at least one exception handler to catch
all otherwise unhandled exceptions

[Implementation 15.3(9), 15.5.1(2)]
Rationale

If a program throws an unhandled exception it terminates in an implementation-defined manner. In
particular, it is implementation-defined whether the call stack is unwound, before termination, so the
destructors of any automatic objects may or may not be executed. By enforcing the provision of a
“last-ditch catch-all”, the developer can ensure that the program terminates in a consistent manner.
The objective of Rule 15–3–4 is that a program should catch all exceptions that it is expected to
throw. This rule’s objective is to ensure that exceptions that were not expected are also caught.

Example

For the majority of programs this will mean main should look like:
int32_t main()
{
 try
 {
 // program code
 }

 catch (...) // Catch-all handler
 {
 // Handle unexpected exceptions
 }
 return 0;
}

See also

Rule 15–3–4, Rule 15–5–3

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

152

Rule 15–3–3 (Required) Handlers of a function-try-block implementation of a
class constructor or destructor shall not reference non-
static members from this class or its bases.

[Undefined	15.3(10)]
Rationale

The effect of accessing a non-static member of a class or a base class in the handler (i.e. the catch
part) of a function-try-block	of	a	class	constructor/destructor	is	undefined.
For example, if a memory allocation exception is thrown during creation of the object, the object
will not exist when the handler attempts to access its members. Conversely, in the destructor, the
object may have been successfully destroyed before the exception is handled, so again will not be
available to the handler.
By contrast, the lifetime of a static member is greater than that of the object itself, so the static
member is guaranteed to exist when the handler accesses it.

Example
class C
{
public:
 int32_t x;

 C ()
 try
 {
 // Action that may raise an exception
 }

 catch (...)
 {
 if (0 == x) // Non-compliant – x may not exist at this point
 {
 // Action dependent on value of x
 }
 }

 ~C ()
 try
 {
 // Action that may raise an exception
 }

 catch (...)
 {
 if (0 == x) // Non-compliant – x may not exist at this point
 {
 // Action dependent on value of x
 }
 }
};

See also

Rule 15–3–1, Rule 15–5–1

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

153

Rule 15–3–4 (Required) Each exception explicitly thrown in the code shall have
a handler of a compatible type in all call paths that
could lead to that point.

[Implementation 15.3(9), 15.5.1(2)]
Rationale

If a program throws an unhandled exception, it terminates in an implementation-defined manner.
In particular, it is implementation-defined whether the call stack is unwound before termination,
so the destructors of any automatic objects may or may not be invoked.
If an exception is thrown as an object of a derived class, a “compatible type” may be either the
derived class or any of its bases.
The objective of this rule is that a program should catch all exceptions that it is expected to throw.
The objective of Rule 15–3–2 is to ensure that exceptions that were not expected are also caught.

Example
class A {};
class B {};

void f (int32_t i) throw ()
{
 try
 {
 if (i > 10)
 {
 throw A (); // Compliant
 }
 else
 {
 throw B (); // Non-compliant
 }
 }
 catch (A const &)
 {
 }
}

See also

Rule 15–3–2, Rule 15–5–3

Rule 15–3–5 (Required) A class type exception shall always be caught by
reference.

Rationale

If a class type exception object is caught by value, slicing occurs. That is, if the exception object is of
a derived class and is caught as the base, only the base class’s functions (including virtual functions)
can be called. Also, any additional member data in the derived class cannot be accessed.
If the exception is caught by reference, slicing does not occur.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

154

Example
// base class for exceptions
class ExpBase
{
public:
 virtual const char_t *who ()
 {
 return "base";
 };
};

class ExpD1: public ExpBase
{
public:
 virtual const char_t *who ()
 {
 return "type 1 exception";
 };
};

class ExpD2: public ExpBase
{
public:
 virtual const char_t *who ()
 {
 return "type 2 exception";
 };
};

try
{
 // ...
 throw ExpD1 ();
 // ...
 throw ExpBase ();
}

catch (ExpBase &b) // Compliant – exceptions caught by reference
{
 // ...
 b.who(); // "base", "type 1 exception" or "type 2 exception"
 // depending upon the type of the thrown object
}

// Using the definitions above ...
catch (ExpBase b) // Non-compliant - derived type objects will be
 // caught as the base type
{
 b.who(); // Will always be "base"
 throw b; // The exception re-thrown is of the base class,
 // not the original exception type
}

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

155

Rule 15–3–6 (Required) Where multiple handlers are provided in a single
try-catch statement or function-try-block for a derived
class and some or all of its bases, the handlers shall be
ordered most-derived to base class.

Rationale

When testing to see if the type of an exception matches the type of a handler, a derived class
exception will match with a handler for its base class. If the base class handler is found before
the handler for the derived class, the base class handler will be used. The derived class handler is
unreachable code and can never be executed.

Example
// classes used for exception handling
class B { };
class D: public B { };

try
{
 // ...
}

catch (D &d) // Compliant – Derived class caught before base class
{
 // ...
}

catch (B &b) // Compliant – Base class caught after derived class
{
 // ...
}

// Using the classes from above ...
try
{
 // ...
}

catch (B &b) // Non-compliant – will catch derived classes as well
{
 // ...
}

catch (D &d) // Non-compliant – Derived class will be caught above
{
 // Any code here will be unreachable,
 // breaking Rule 0–1–1
}

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

156

Rule 15–3–7 (Required) Where multiple handlers are provided in a single
try-catch statement or function-try-block, any ellipsis
(catch-all) handler shall occur last.

Rationale

If the catch-all handler is found before any other handler, that behaviour will be performed. Any
handlers after the catch-all are unreachable code and can never be executed.

Example
void f1 ()
{
 try
 {
 // ...
 }

 catch (int32_t i) // int handler
 {
 // Handle int exceptions
 }

 catch(...) // catch-all handler
 {
 // Handle all other exception types
 }
}

void f2 ()
{
 try
 {
 // ...
 }

 catch(...) // catch-all handler
 {
 // Handle all exception types
 }

 catch (int32_t i) // Non-compliant – handler will never be called
 {
 }
}

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

157

Exception specifications6.15.4

Rule 15–4–1 (Required) If a function is declared with an exception-specification,
then all declarations of the same function (in other
translation units) shall be declared with the same set of
type-ids.

[NDR 15.4(2)]
Rationale

It is undefined behaviour if a function has different exception-specifications in different translation
units.

Example
// Translation unit A
void foo() throw (const char_t *)
{
 throw "Hello World!";
}

// Translation unit B
// foo declared in this translation unit with a different exception
// specification
extern void foo () throw (int32_t); // Non-compliant -
 // different specifier

void b () throw (int32_t)
{
 foo (); // The behaviour here is undefined.
}

Special functions6.15.5

Rule 15–5–1 (Required) A class destructor shall not exit with an exception.

[Implementation 15.3(9), 15.5.1(2)]
Rationale

When an exception is thrown, the call stack is unwound up to the point where the exception is
to be handled. The destructors for all automatic objects declared between the point where the
exception is thrown and where it is to be handled will be invoked. If one of these destructors exits
with an exception, then the program will terminate in an implementation-defined manner.
Note that it is acceptable for a destructor to throw an exception that is handled within the destructor,
for example within a try-catch block.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

158

Example
class C1
{
public:
 ~C1 ()
 {
 try
 {
 throw (42); // Compliant - exception will not leave
 // destructor
 }

 catch (int32_t i) // int handler
 {
 // Handle int exception throw by destructor
 }
 }
};

class C2
{
public:
 ~C2 ()
 {
 throw (42); // Non-compliant - destructor exits with an
 // exception
 }
};

void foo ()
{
 C2 c; // program terminates when c is destroyed

 throw (10);
}

See also

Rule 15–3–1, Rule 15–3–3, Rule 15–5–3

Rule 15–5–2 (Required) Where a function’s declaration includes an exception-
specification, the function shall only be capable of
throwing exceptions of the indicated type(s).

[Implementation 15.5.1(2)]
Rationale

If a function declared with an exception-specification throws an exception of a type not included
in	 the	specification,	 the	 function	unexpected() is called. The behaviour of this function can be
overridden within a project, but by default causes an exception of std::bad_exception to be thrown.
If std::bad_exception is not listed in the exception-specification, then terminate() will be called,
leading to implementation-defined termination of the program.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

159

Example
// foo does not have an exception specification, so can propagate
// exceptions of any type, including int
void foo ()
{
 throw (21);
}

// goo specifies that it will only throw exceptions of type Exception.
// If foo throws an int the function unexpected() is called, which may
// terminate the program
void goo () throw (Exception)
{
 foo (); // Non-compliant – int is not listed in the
 // throw specification
}

Rule 15–5–3 (Required) The terminate() function shall not be called implicitly.

[Implementation 15.5.1(2)]
Rationale

It is implementation-defined whether the call stack is unwound before terminate() is called, so the
destructors of any automatic objects may or may not be executed.

See also

Rule 15–3–1, Rule 15–3–2, Rule 15–3–4, Rule 15–5–1. The situations addressed by these rules
cause the program to call terminate() and so exhibit implementation-defined behaviour.

Preprocessing directives6.16
General6.16.0

Rule 16–0–1 (Required) #include directives in a file shall only be preceded by
other preprocessor directives or comments.

Rationale

To aid code readability, all the #include	 directives	 in	a	particular	 code	file	 should	be	grouped	
together	near	the	head	of	the	file.	The	only	items	which	may	precede	a	#include	in	a	file	are	other	
preprocessor directives or comments.

Example
#include <f1.h> // Compliant

int32_t i;

#include <f2.h> // Non-compliant

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

160

Rule 16–0–2 (Required) Macros shall only be #define’d or #undef’d in the global
namespace.

Rationale

While it is legal to place #define or #undef	directives	anywhere	in	a	source	file,	placing	them	outside	
of the global namespace is misleading as their scope is not restricted. This may be inconsistent
with developer expectations.

Example
#ifndef MY_HDR
#define MY_HDR // Compliant

namespace NS
{
 #define FOO // Non-compliant
 #undef FOO // Non-compliant
}

#endif

See also

Rule 16–0–3

Rule 16–0–3 (Required) #undef shall not be used.

Rationale

#undef should not normally be needed. Its use can lead to confusion with respect to the existence
or meaning of a macro when it is used in the code.

Example
#ifndef MY_HDR
#define MY_HDR

#undef MY_HDR // Non-compliant

#endif

Rule 16–0–4 (Required) Function-like macros shall not be defined.

[Undefined	16.3(10)]
Rationale

While macros can provide a speed advantage over functions, functions provide a safer and more
robust mechanism. This is particularly true with respect to the type checking of parameters, and
the problem of function-like macros potentially evaluating parameters multiple times.
Inline functions should be used instead.

Example
#define FUNC_MACRO(X) ((X)+(X)) // Non-compliant

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

161

Rule 16–0–5 (Required) Arguments to a function-like macro shall not contain
tokens that look like preprocessing directives.

[Undefined	16.3(10)]
Rationale

If any of the arguments act like preprocessor directives, the behaviour when macro substitution is
made can be unpredictable.

Example
#define M(A) printf (#A)

void main ()
{
 M(
#ifdef SW // Non-compliant
 "Message 1"
#else // Non-compliant
 "Message 2"
#endif // Non-compliant
);
}

The above may print
#ifdef SW "Message 1" #else "Message 2" #endif

or
Message 2

Rule 16–0–6 (Required) In the definition of a function-like macro, each instance
of a parameter shall be enclosed in parentheses, unless
it is used as the operand of # or ##.

Rationale

If parentheses are not used, then the operator precedence may not give the desired results when
the preprocessor substitutes the macro into the code.
Within	a	definition	of	a	function-like	macro,	the	arguments	shall	be	enclosed	in	parentheses.

Example

Define	an	abs function using:
#define abs(x) (((x) >= 0) ? (x) : -(x)) // Compliant

and not:
#define abs(x) ((x >= 0) ? x : -x) // Non-compliant

Consider	what	happens	if	the	second,	incorrect,	definition	is	substituted	into	the	expression:
z = abs(a - b);

giving:
z = ((a - b >= 0) ? a - b : -a – b);

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

162

The sub-expression -a - b is equivalent to (-a)-b rather than -(a-b) as intended. Putting all the
parameters	in	parentheses	in	the	macro	definition	avoids	this	problem.

#define subs(x) a ## x // Compliant

Rule 16–0–7 (Required) Undefined macro identifiers shall not be used in #if or
#elif preprocessor directives, except as operands to the
defined operator.

Rationale

If	an	attempt	is	made	to	use	an	identifier	in	a	preprocessor	directive,	and	that	identifier	has	not	been	
defined,	the	preprocessor	will	assume	the	value	zero.	#ifdef, #ifndef and defined() are provided to
test the existence of a macro, and are therefore excluded.

Example
#if x < 0 // Non-compliant - x assumed to be zero as it is not defined

Consideration should be given to the use of a #ifdef	test	before	an	identifier	is	used.
Note	that	preprocessing	identifiers	may	be	defined	either	by	use	of	#define directives or by options
specified	at	compiler	invocation.	However,	the	use	of	the	#define directive is preferred.

Rule 16–0–8 (Required) If the # token appears as the first token on a line, then it
shall be immediately followed by a preprocessing token.

Rationale

When a section of source code is excluded by preprocessor directives, the content of each excluded
statement is ignored until a #else, #elif or #endif directive is encountered (depending on the
context). If one of these excluded directives is badly formed, it may be ignored without warning
by a compiler with unexpected consequences.
The requirement of this rule is that all preprocessor directives shall be syntactically valid even
when they occur within an excluded block of code.
In particular, ensure that #else and #endif directives are not followed by any characters other than
white-space. Compilers are not always consistent in enforcing this requirement.

Example
#define AAA 2

int32_t foo(void)
{
 int32_t x = 0;
 ...
#ifndef AAA
 x = 1;
#else1 // Non-compliant
 x = AAA;
#endif
 ...
 return x;
}

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

163

Conditional inclusion6.16.1

Rule 16–1–1 (Required) The defined preprocessor operator shall only be used in
one of the two standard forms.

[Undefined	16.1(4)]
Rationale

The only two permissible forms for the defined preprocessor operator are:
 defined (identifier)
 defined identifier

Any other form is a constraint violation, but this is not reported by all compliers.

Example
#if defined (X > Y) // Non-compliant – constraint violation

Generation	of	 the	 token	defined	during	expansion	of	a	#if or #elif preprocessing directive also
leads to undefined behaviour and shall be avoided, for example:

#define DEFINED defined
#if DEFINED(X) // Non-compliant - undefined behaviour

Rule 16–1–2 (Required) All #else, #elif and #endif preprocessor directives shall
reside in the same file as the #if or #ifdef directive to
which they are related.

Rationale

When the inclusion and exclusion of blocks of statements is controlled by a series of preprocessor
directives,	confusion	can	arise	if	all	of	the	relevant	directives	do	not	occur	within	one	file.	This	
rule requires that all preprocessor directives in a sequence of the form #if / #ifdef ... #elif ... #else
... #endif	shall	reside	in	the	same	file.	Observance	of	this	rule	preserves	good	code	structure	and	
avoids maintenance problems.
Notice that this does not preclude the possibility that such directives may exist within included
files	provided	that	all	directives	that	relate	to	the	same	sequence	are	located	in	one	file.

Example
// file.cpp
#define A
...
#ifdef A
...
#include "file1.hpp"

#endif
...
#if 1
#include "file2.hpp"
...

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

164

// file1.hpp
#if 1
...
#endif // Compliant

// file2.hpp
...
#endif // Non-compliant

Source file inclusion6.16.2

Rule 16–2–1 (Required) The pre-processor shall only be used for file inclusion
and include guards.

Rationale

C++ provides safer ways of achieving what is often done using the pre-processor, by way of inline
functions and constant declarations.

Example
#ifndef HDR // Compliant
#define HDR // Compliant

#define X(Y) (Y) // Non-compliant

#endif

See also

Rule 16–2–2

Rule 16–2–2 (Required) C++ macros shall only be used for include guards, type
qualifiers, or storage class specifiers.

Rationale

These are the only permitted uses of macros. C++ offers const variable and function templates,
which provide a type-safe alternative to the preprocessor.
Note	 that	 the	 use	 of	 macros	 for	 type	 qualifiers	 and	 storage	 class	 specifiers	 will	 break	
Rule 16–2–1.

Example
// The following are compliant
#define STOR extern // storage class specifier
 // Breaks Rule 16–2–1

// The following are non-compliant
#define CLOCK (xtal/16) // Constant expression
#define PLUS2(X) ((X) + 2) // Macro expanding to expression
#define PI 3.14159F // use const object instead
#define int32_t long // use typedef instead
#define STARTIF if(// language redefinition
#define INIT(value) {(value), 0, 0} // braced initializer
#define HEADER "filename.h" // string literal

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

165

See also

Rule 16–2–1

Rule 16–2–3 (Required) Include guards shall be provided.

The include guard shall use one of the following two forms:
<start-of-file>
// Comments allowed here
#if !defined (identifier)
#define identifier
 // Contents of file
#endif
<end-of-file>

<start-of-file>
// Comments allowed here
#ifndef identifier
#define identifier
 // Contents of file
#endif
<end-of-file>

Rationale

When a translation unit contains a complex hierarchy of nested header files, it is possible for a
particular header file to be included more than once. This can be, at best, a source of confusion. If
this	multiple	inclusion	leads	to	multiple	or	conflicting	definitions,	then	this	can	result	in	undefined	
or erroneous behaviour.
These forms are mandated to facilitate checking.

Example
// file.h
#ifndef FILE_H

#endif

// file.cc
#include "file.h"
#define FILE_H // Non-compliant

Rule 16–2–4 (Required) The ', ", /* or // characters shall not occur in a header
file name.

[Undefined	2.8(2)]
Rationale

It is undefined behaviour if the ', ", /* or // characters are used between < and > delimiters or the
', /* or // characters are used between the " delimiters in a header name preprocessing token.

Example
#include "fi'le.h" // Non-compliant

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

166

Rule 16–2–5 (Advisory) The \ character should not occur in a header file name.
[Undefined	2.8(2)]

Rationale

It is undefined behaviour if the \ character is used between < and > delimiters or between the "
delimiters in a header name preprocessing token.
Note that this rule is only advisory, since some environments use \	 as	 a	 file	 name	 delimiter.	
Compilers for these environments often support the use of / in #include directives.

Example
#include "fi\\le.h" // Non-compliant

Rule 16–2–6 (Required) The #include directive shall be followed by either a
<filename> or "filename" sequence.

[Undefined	16.2(4)]
Rationale

These are the only forms for the #include directive permitted by ISO/IEC 14882:2003 [1].

Example
#include "filename.h" // Compliant
#include <filename.h> // Compliant
#define HEADER "filename.h" // Non-compliant with Rule 16–2–2
#include HEADER // Compliant
#include another.h // Non-compliant

Macro replacement6.16.3

Rule 16–3–1 (Required) There shall be at most one occurrence of the # or ##
operators in a single macro definition.

[Unspecified	16.3.2(2),	16.3.3(3),	Undefined	16.3.2(2),	16.3.3(3)]
Rationale

The order of evaluation associated with both the # and ##	preprocessor	operators	is	unspecified.	
This problem can be avoided by having only one occurrence of either operator in any single macro
definition	(i.e.	one	#, or one ## or neither).

Example
#define A(x) #x // Compliant
#define B(x, y) x ## y // Compliant
#define C(x, y) # x ## y // Non-compliant

In the following, if y is joined to z	first	 then	the	fourth	parameter	of	D will be substituted and
joined to x. Alternatively, if x is joined with y	first,	 then	the	fourth	parameter	of	D will not be
substituted.

#define D(x, y, z, yz) x ## y ## z // Non-compliant

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

167

Rule 16–3–2 (Advisory) The # and ## operators should not be used.

[Unspecified	16.3.2(2),	16.3.3(3),	Undefined	16.3.2(2),	16.3.3(3)]
Rationale

The order of evaluation associated with both the # and ##	preprocessor	operators	is	unspecified.	
Compilers have been known to implement these operators inconsistently, therefore, to avoid these
problems, do not use them.

Example
#define A(Y) #Y // Non-compliant
#define A(X,Y) X##Y // Non-compliant

Pragma directive6.16.6

Rule 16–6–1 (Document) All uses of the #pragma directive shall be documented.

[Implementation 16.6(1)]
Rationale

The #pragma directive is implementation-defined, hence it is important to demonstrate that all
uses are correct.
This rule places a requirement on the user of this document to produce a list of any pragmas
they choose to use in an application. The meaning of each pragma shall be documented. There
shall	be	sufficient	supporting	description	to	demonstrate	that	the	behaviour	of	the	pragma and its
implications for the application, have been fully understood.
Any use of pragmas should be minimized, localized and encapsulated within dedicated functions
wherever possible.

Library introduction6.17
General6.17.0

Rule 17–0–1 (Required) Reserved identifiers, macros and functions in the
standard library shall not be defined, redefined or
undefined.

[Undefined	16.8(3)]
Rationale

It is generally bad practice to #undef	a	macro	that	is	defined	in	the	standard	library.	It	is	also	bad	
practice to #define	a	macro	name	that	is	a	C++	reserved	identifier,	or	C++	keyword	or	the	name	
of	any	macro,	object	or	 function	 in	 the	 standard	 library.	For	example,	 there	are	 some	specific	
reserved words and function names that are known to give rise to undefined behaviour if they are
redefined	or	undefined,	including	defined, _ _LINE_ _, _ _FILE_ _, _ _DATE_ _, _ _TIME_ _,
_ _STDC_ _, errno and assert.
Refer	 to	 ISO/IEC	 14882:2003	 [1]	 for	 a	 list	 of	 the	 identifiers	 that	 are	 reserved.	Generally,	 all	
identifiers	that	begin	with	the	underscore	character	are	reserved.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

168

Note that this rule applies regardless of which header files, if any, are actually included.

Example
#define __TIME__ 11111111 // Non-compliant

See also

Rule 16–0–3

Rule 17–0–2 (Required) The names of standard library macros and objects shall
not be reused.

Rationale

Where the developer uses new versions of standard library macros or objects (e.g. to enhance
functionality	or	add	checks	of	input	values),	the	modified	macro	or	object	shall	have	a	new	name.	
This	is	to	avoid	any	confusion	as	to	whether	a	standard	macro	or	object,	or	a	modified	version	of	
them, is being used.

Example
#define NULL (a > b) // Non-compliant

Rule 17–0–3 (Required) The names of standard library functions shall not be
overridden.

Rationale

Where the developer uses new versions of standard library functions (e.g. to enhance functionality
or	 add	 checks	 of	 input	 values),	 the	modified	 function	 shall	 have	 a	 new	 name.	However,	 it	 is	
permissible to overload the name to add new parameter types if the functionality is consistent
with those of the original. This ensures that the behaviour associated with the name remains
consistent. So, for example, if a new version of the sqrt function is written to check that the input
is not negative, the new function shall not be named “sqrt”, but shall be given a new name. It is
permissible to add a new sqrt function for a type not present in the library.

Example
int32_t printf (int32_t a, int32_t b) // Non-compliant
{
 return ((a > b) ? a : b);
}

Rule 17–0–4 (Document) All library code shall conform to MISRA C++.

Rationale

The quality of any libraries (linked or included) must be to at least the same standard (i.e. SIL
level) as the rest of the project.
Library code may exist either as source code or object code. Either type shall include documentation
to demonstrate how that code complies with MISRA C++.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

169

Rule 17–0–5 (Required) The setjmp macro and the longjmp function shall not be
used.

Rationale

setjmp and longjmp allow the normal function call mechanisms to be bypassed, and shall not be
used,	since	exception	handling	provides	a	better	defined	mechanism	for	this.

Example
#include <setjmp.h>

void f2 ();

jmp_buf buf;

void f1 ()
{
 if (!setjmp (buf)) // Non-compliant
 {
 f2 ();
 }
 else
 {
 }
}

void f2 ()
{
 longjmp (buf, 10); // Non-compliant
}

Language support library6.18
General6.18.0

Rule 18–0–1 (Required) The C library shall not be used.

Rationale

Some C++ libraries (e.g. <cstdio>) also have corresponding C versions (e.g. <stdio.h>). This rule
requires that the C++ version is used.

Rule 18–0–2 (Required) The library functions atof, atoi and atol from library
<cstdlib> shall not be used.

Rationale

These functions have undefined behaviour associated with them when the string cannot be
converted.

Example
#include <cstdlib>

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

170

int32_t f (const char_t * numstr)
{
 return atoi (numstr); // Non-compliant
}

See also

ISO/IEC	9899:1990	[16]	§7.10.1

Rule 18–0–3 (Required) The library functions abort, exit, getenv and system from
library <cstdlib> shall not be used.

Rationale

The use of these functions leads to implementation-defined behaviour.

Example
#include <cstdlib>

void f ()
{
 exit (0); // Non-compliant
}

Rule 18–0–4 (Required) The time handling functions of library <ctime> shall not
be used.

Rationale

Various aspects are implementation-defined or unspecified, such as the formats of times.

Example
#include <ctime>

void f ()
{
 clock (); // Non-compliant
}

Rule 18–0–5 (Required) The unbounded functions of library <cstring> shall not
be used.

[Undefined	5.7]
Rationale

The strcpy, strcmp, strcat, strchr, strspn, strcspn, strpbrk, strrchr, strstr, strtok and strlen functions
within the <cstring> library can read or write beyond the end of a buffer, resulting in undefined
behaviour.
Ideally, a safe string handling library should be used.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

171

Example
#include <cstring>

void fn (const char_t * pChar)
{
 char_t array [10];

 strcpy (array, pChar); // Non-compliant
}

Implementation properties6.18.2

Rule 18–2–1 (Required) The macro offsetof shall not be used.

Rationale

Use of this macro can lead to undefined behaviour when the types of the operands are incompatible,
or	when	bit	fields	are	used.

Example
#include <cstddef>

struct A
{
 int32_t i;
};

void f1 ()
{
 offsetof (A, i); // Non-compliant
}

Dynamic memory management6.18.4

Rule 18–4–1 (Required) Dynamic heap memory allocation shall not be used.

Rationale

The use of dynamic memory can lead to out-of-storage run-time failures, which are undesirable.
The built-in new and delete operators, other than the placement versions, use dynamic heap
memory. The functions calloc, malloc, realloc and free also use dynamic heap memory.
There is a range of unspecified, undefined and implementation-defined behaviour associated with
dynamic memory allocation, as well as a number of other potential pitfalls. Dynamic heap memory
allocation may lead to memory leaks, data inconsistency, memory exhaustion, non-deterministic
behaviour, etc.
Note that some implementations may use dynamic heap memory allocation to implement other
functions (for example, functions in the library cstring). If this is the case, then these functions
shall also be avoided.

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

172

Example
void f1 ()
{
 int32_t * i = new int32_t; // Non-compliant

 delete i;
}

Other runtime support6.18.7

Rule 18–7–1 (Required) The signal handling facilities of <csignal> shall not be
used.

Rationale

Signal handling contains implementation-defined and undefined behaviour.

Example
#include <csignal>

void my_handler (int32_t);

void f1 ()
{
 signal (1, my_handler); // Non-compliant
}

Diagnostics library6.19
Error numbers6.19.3

Rule 19–3–1 (Required) The error indicator errno shall not be used.

Rationale

errno	is	a	facility	of	C++	which	should	in	theory	be	useful,	but	which	in	practice	is	poorly	defined	
by ISO/IEC 14882:2003 [1]. A non-zero value may or may not indicate that a problem has occurred;
therefore errno shall not be used.
Even for those functions for which the behaviour of errno	is	well	defined,	it	is	preferable	to	check	
the values of inputs before calling the function rather than relying on using errno to trap errors.

Example
#include <cstdlib>
#include <cerrno>

void f1 (const char_t * str)
{
 errno = 0; // Non-compliant
 int32_t i = atoi (str);

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

173

 if (0 != errno) // Non-compliant
 {
 // handle error case???
 }
}

See also

Rule 0–3–2

Input/output library6.27
General6.27.0

Rule 27–0–1 (Required) The stream input/output library <cstdio> shall not be
used.

Rationale

This	includes	file	and	I/O	functions	fgetpos, fopen, ftell, gets, perror, remove, rename, etc.
Streams	and	file	I/O	have	a	large	number	of	unspecified, undefined and implementation-defined
behaviours associated with them.

Example
#include <cstdio> // Non-compliant

void fn ()
{
 char_t array [10];

 gets (array); // Can lead to buffer over-run
}

6. Rules (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

174

References7.

ISO/IEC 14882:2003, [1] The C++ Standard Incorporating Technical Corrigendum 1,
International Organization for Standardization, 2003.
MISRA [2] Development Guidelines for Vehicle Based Software, ISBN 0-9524156-0-7, Motor
Industry Research Association, Nuneaton, November 1994.
MISRA AC INT [3] Introduction to the MISRA guidelines for the use of automatic code
generation in automotive systems, ISBN 978-1-906400-00-2, MIRA Limited, November
2007.
CRR80, [4] The Use of Commercial Off-the-Shelf (COTS) Software in Safety Related
Applications, ISBN 0-7176-0984-7, HSE Books.
ISO 9001:2000, [5] Quality management systems — Requirements, International Organization
for Standardization, 2000.
ISO 90003:2004, [6] Software engineering — Guidelines for the application of ISO
9001:2000 to computer software, ISO, 2004.
The TickIT Guide, [7] Using ISO 9001:2000 for Software Quality Management System
Construction, Certification and Continual Improvement, Issue 5, British Standards
Institution, 2001.
Straker D., [8] C Style: Standards and Guidelines, ISBN 0–13-116898-3, Prentice Hall 1991.
Fenton	N.E.	and	Pfleeger	S.L.,	[9] Software Metrics: A Rigorous and Practical Approach, 2nd
Edition, ISBN 0-534-95429-1, PWS, 1998.
MISRA Report 5, [10] Software Metrics, Motor Industry Research Association, Nuneaton,
February 1995.
MISRA Report 6, [11] Verification and Validation, Motor Industry Research Association,
Nuneaton, February 1995.
IEC 61508, [12] Functional safety of electrical/electronic/programmable electronic safety-
related systems, International Electromechanical Commission, in 7 parts published
between 1998 and 2000.
Goldberg D., [13] What Every Computer Scientist Should Know about Floating-Point
Arithmetic, Computing Surveys, March 1991.
ANSI/IEEE Std 754, [14] IEEE Standard for Binary Floating-Point Arithmetic, 1985.
ISO/IEC 10646:2003, [15] Information technology — Universal Multiple-Octet Coded
Character Sets (UCS), International Organization for Standardization, 2003.
ISO/IEC 9899:1990, [16] Programming Languages — C, International Organization for
Standardization, 1990.
Hill M.G. and Whiting E.V, [17] An Investigation of the Unpredictable Features of the C++
Language, QINETIQ/KI/TIM/TR043014, QinetiQ, May 2004.
High-Integrity C++ Coding Standard Manual Version 2.2[18] , The Programming Research
Group, May 2004.

7. References

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

175

Joint Strike Fighter Air Vehicle C++ Coding Standards for the System Development [19]
and Demonstration Program, Document Number 2RDU00001 Rev C, Lockheed Martin,
December 2005.
Henricson M., Nyquist E., I[20] ndustrial Strength C++, ISBN 0-13-120965-5, Prentice Hall,
1997.
Sutter H., [21] Exceptional C++, ISBN 0-201-61562-2, Addison-Wesley, 1999.
Koenig A., C [22] Traps and Pitfalls, ISBN 0-201-17928-8, Addison-Wesley, 1988.
Hatton L., [23] Safer C, ISBN 0-07-707640-0, McGraw-Hill, 1994.
Dewhurst S., [24] C++ Gotchas, ISBN 0-321-12518-5, Addison-Wesley, 2003.
Meyers S., [25] More Effective C++, ISBN 0-201-63371-X, Addison-Wesley, 1996.
Meyers S., [26] Effective C++, ISBN 0-321-33487-6 (Third Edition), Addison-Wesley, 2005.

7. References (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

176

Summary of rulesAppendix A:

Unnecessary constructs

Rule 0–1–1 (Required) A project shall not contain unreachable code.
Rule 0–1–2 (Required) A project shall not contain infeasible paths.
Rule 0–1–3 (Required) A project shall not contain unused variables.
Rule 0–1–4 (Required) A project shall not contain non-volatile POD variables having only

one use.
Rule 0–1–5 (Required) A project shall not contain unused type declarations.
Rule 0–1–6 (Required) A project shall not contain instances of non-volatile variables being

given values that are never subsequently used.
Rule 0–1–7 (Required) The value returned by a function having a non-void return type that

is not an overloaded operator shall always be used.
Rule 0–1–8 (Required) All functions with void return type shall have external side

effect(s).
Rule 0–1–9 (Required) There shall be no dead code.
Rule	0–1–10	 (Required)	 Every	defined	function	shall	be	called	at	least	once.
Rule 0–1–11 (Required) There shall be no unused parameters (named or unnamed) in non-

virtual functions.
Rule 0–1–12 (Required) There shall be no unused parameters (named or unnamed) in the

set of parameters for a virtual function and all the functions that
override it.

Storage
Rule 0–2–1 (Required) An object shall not be assigned to an overlapping object.

Runtime failures
Rule 0–3–1 (Document) Minimization of run-time failures shall be ensured by the use of at

least one of:
(a) static analysis tools/techniques;
(b) dynamic analysis tools/techniques;
(c) explicit coding of checks to handle run-time faults.

Rule 0–3–2 (Required) If a function generates error information, then that error information
shall be tested.

Arithmetic
Rule	0–4–1	 (Document)	 Use	 of	 scaled-integer	 or	 fixed-point	 arithmetic	 shall	 be	

documented.
Rule	0–4–2	 (Document)	 Use	of	floating-point	arithmetic	shall	be	documented.

Appendix A

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

177

Rule	0–4–3	 (Document)	 Floating-point	implementations	shall	comply	with	a	defined	floating-
point standard.

Language
Rule 1–0–1 (Required) All code shall conform to ISO/IEC 14882:2003 “The C++ Standard

Incorporating Technical Corrigendum 1”.
Rule 1–0–2 (Document) Multiple compilers shall only be used if they have a common,

defined	interface.
Rule 1–0–3 (Document) The implementation of integer division in the chosen compiler shall

be determined and documented.

Character sets
Rule 2–2–1 (Document) The character set and the corresponding encoding shall be

documented.

Trigraph sequences
Rule 2–3–1 (Required) Trigraphs shall not be used.

Alternative tokens
Rule 2–5–1 (Advisory) Digraphs should not be used.

Comments
Rule 2–7–1 (Required) The character sequence /* shall not be used within a C-style

comment.
Rule 2–7–2 (Required) Sections of code shall not be “commented out” using C-style

comments.
Rule 2–7–3 (Advisory) Sections of code should not be “commented out” using C++

comments.

Identifiers
Rule	2–10–1	 (Required)	 Different	identifiers	shall	be	typographically	unambiguous.
Rule	2–10–2	 (Required)	 Identifiers	 declared	 in	 an	 inner	 scope	 shall	 not	 hide	 an	 identifier	

declared in an outer scope.
Rule 2–10–3 (Required) A typedef	name	(including	qualification,	 if	any)	shall	be	a	unique

identifier.
Rule 2–10–4 (Required) A class, union or enum	name	(including	qualification,	if	any)	shall	

be a unique	identifier.
Rule	2–10–5	 (Advisory)	 The	identifier	name	of	a	non-member	object	or	function	with	static	

storage duration should not be reused.
Rule	2–10–6	 (Required)	 If	an	identifier	refers	to	a	type,	it	shall	not	also	refer	to	an	object	or	

a function in the same scope.

Appendix A (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

178

Literals
Rule	2–13–1	 (Required)	 Only	those	escape	sequences	that	are	defined	in	ISO/IEC	14882:2003	

shall be used.
Rule 2–13–2 (Required) Octal constants (other than zero) and octal escape sequences (other

than “\0”) shall not be used.
Rule 2–13–3 (Required) A “U ”	 suffix	 shall	 be	 applied	 to	 all	 octal	 or	 hexadecimal	 integer	

literals of unsigned type.
Rule	2–13–4	 (Required)	 Literal	suffixes	shall	be	upper	case.
Rule 2–13–5 (Required) Narrow and wide string literals shall not be concatenated.

Declarations and definitions
Rule 3–1–1 (Required) It shall be possible to include any header file in multiple translation

units without violating the One Definition Rule.
Rule 3–1–2 (Required) Functions shall not be declared at block scope.
Rule 3–1–3 (Required) When an array is declared, its size shall either be stated explicitly or

defined	implicitly	by	initialization.

One Definition Rule
Rule 3–2–1 (Required) All declarations of an object or function shall have compatible

types.
Rule 3–2–2 (Required) The One Definition Rule shall not be violated.
Rule 3–2–3 (Required) A type, object or function that is used in multiple translation units

shall	be	declared	in	one	and	only	one	file.
Rule	3–2–4	 (Required)	 An	 identifier	 with	 external	 linkage	 shall	 have	 exactly	 one	

definition.

Declarative regions and scope
Rule 3–3–1 (Required) Objects or functions with external linkage shall be declared in a

header file.
Rule 3–3–2 (Required) If a function has internal linkage then all re-declarations shall include

the static	storage	class	specifier.

Name lookup
Rule	3–4–1	 (Required)		 An	identifier	declared	to	be	an	object	or	type	shall	be	defined	in	a	

block that minimizes its visibility.

Types
Rule 3–9–1 (Required) The types used for an object, a function return type, or a function

parameter shall be token-for-token identical in all declarations and
re-declarations.

Appendix A (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

179

Rule 3–9–2 (Advisory) typedefs that indicate size and signedness should be used in place of
the basic numerical types.

Rule	3–9–3	 (Required)	 The	underlying	bit	representations	of	floating-point	values	shall	not	
be used.

Integral promotions
Rule 4–5–1 (Required) Expressions with type bool shall not be used as operands to built-in

operators other than the assignment operator =, the logical operators
&&, ||, !, the equality operators == and !=, the unary & operator, and
the conditional operator.

Rule 4–5–2 (Required) Expressions with type enum shall not be used as operands to built-
in operators other than the subscript operator [], the assignment
operator =, the equality operators == and !=, the unary & operator,
and the relational operators <, <=, >, >=.

Rule 4–5–3 (Required) Expressions with type (plain) char and wchar_t shall not be used as
operands to built-in operators other than the assignment operator =,
the equality operators == and !=, and the unary & operator.

Pointer conversions
Rule 4–10–1 (Required) NULL shall not be used as an integer value.
Rule 4–10–2 (Required) Literal zero (0) shall not be used as the null-pointer-constant.

Expressions
Rule 5–0–1 (Required) The value of an expression shall be the same under any order of

evaluation that the standard permits.
Rule 5–0–2 (Advisory) Limited dependence should be placed on C++ operator precedence

rules in expressions.
Rule 5–0–3 (Required) A cvalue expression shall not be implicitly converted to a different

underlying type.
Rule 5–0–4 (Required) An implicit integral conversion shall not change the signedness of

the underlying type.
Rule 5–0–5 (Required) There shall be no implicit floating-integral conversions.
Rule	5–0–6	 (Required)	 An	implicit	integral	or	floating-point	conversion	shall	not	reduce	the	

size of the underlying type.
Rule 5–0–7 (Required) There shall be no explicit floating-integral conversions of a cvalue

expression.
Rule	5–0–8	 (Required)	 An	explicit	integral	or	floating-point	conversion	shall	not	increase	

the size of the underlying type of a cvalue expression.
Rule 5–0–9 (Required) An explicit integral conversion shall not change the signedness of

the underlying type of a cvalue expression.

Appendix A (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

180

Rule 5–0–10 (Required) If the bitwise operators ~ and << are applied to an operand with an
underlying type of unsigned char or unsigned short, the result shall
be immediately cast to the underlying type of the operand.

Rule 5–0–11 (Required) The plain char type shall only be used for the storage and use of
character values.

Rule 5–0–12 (Required) signed char and unsigned char type shall only be used for the storage
and use of numeric values.

Rule 5–0–13 (Required) The condition of an if-statement and the condition of an iteration-
statement shall have type bool.

Rule	5–0–14	 	(Required)	 The	first	operand	of	a	conditional-operator shall have type bool.
Rule 5–0–15 (Required) Array indexing shall be the only form of pointer arithmetic.
Rule 5–0–16 (Required) A pointer operand and any pointer resulting from pointer arithmetic

using that operand shall both address elements of the same array.
Rule 5–0–17 (Required) Subtraction between pointers shall only be applied to pointers that

address elements of the same array.
Rule 5–0–18 (Required) >, >=, <, <= shall not be applied to objects of pointer type, except

where they point to the same array.
Rule 5–0–19 (Required) The declaration of objects shall contain no more than two levels of

pointer indirection.
Rule 5–0–20 (Required) Non-constant operands to a binary bitwise operator shall have the

same underlying type.
Rule 5–0–21 (Required) Bitwise operators shall only be applied to operands of unsigned

underlying type.

Postfix expressions
Rule 5–2–1 (Required) Each operand of a logical && or || shall be a postfix-expression.
Rule 5–2–2 (Required) A pointer to a virtual base class shall only be cast to a pointer to a

derived class by means of dynamic_cast.
Rule 5–2–3 (Advisory) Casts from a base class to a derived class should not be performed

on polymorphic types.
Rule 5–2–4 (Required) C-style casts (other than void casts) and functional notation casts

(other than explicit constructor calls) shall not be used.
Rule 5–2–5 (Required) A cast shall not remove any const or volatile	qualification	from	the	

type of a pointer or reference.
Rule 5–2–6 (Required) A cast shall not convert a pointer to a function to any other pointer

type, including a pointer to function type.
Rule 5–2–7 (Required) An object with pointer type shall not be converted to an unrelated

pointer type, either directly or indirectly.

Appendix A (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

181

Rule 5–2–8 (Required) An object with integer type or pointer to void type shall not be
converted to an object with pointer type.

Rule 5–2–9 (Advisory) A cast should not convert a pointer type to an integral type.
Rule 5–2–10 (Advisory) The increment (++) and decrement (--) operators should not be

mixed with other operators in an expression.
Rule 5–2–11 (Required) The comma operator, && operator and the || operator shall not be

overloaded.
Rule	5–2–12	 (Required)		 An	identifier	with	array	type	passed	as	a	function	argument	shall	not	

decay to a pointer.

Unary expressions
Rule 5–3–1 (Required) Each operand of the ! operator, the logical && or the logical ||

operators shall have type bool.
Rule 5–3–2 (Required) The unary minus operator shall not be applied to an expression

whose underlying type is unsigned.
Rule 5–3–3 (Required) The unary & operator shall not be overloaded.
Rule 5–3–4 (Required) Evaluation of the operand to the sizeof operator shall not contain

side effects.

Shift operators
Rule 5–8–1 (Required) The right hand operand of a shift operator shall lie between zero and

one less than the width in bits of the underlying type of the left hand
operand.

Logical AND operator
Rule 5–14–1 (Required) The right hand operand of a logical && or || operator shall not

contain side effects.

Assignment operators
Rule 5–17–1 (Required) The semantic equivalence between a binary operator and its

assignment operator form shall be preserved.

Comma operator
Rule 5–18–1 (Required) The comma operator shall not be used.

Constant expressions
Rule 5–19–1 (Advisory) Evaluation of constant unsigned integer expressions should not lead

to wrap-around.

Expression statement
Rule 6–2–1 (Required) Assignment operators shall not be used in sub-expressions.

Appendix A (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

182

Rule 6–2–2 (Required) Floating-point expressions shall not be directly or indirectly tested
for equality or inequality.

Rule 6–2–3 (Required) Before preprocessing, a null statement shall only occur on a line
by	itself;	it	may	be	followed	by	a	comment,	provided	that	the	first	
character following the null statement is a white-space character.

Compound statement
Rule 6–3–1 (Required) The statement forming the body of a switch, while, do ... while or for

statement shall be a compound statement.

Selection statements
Rule 6–4–1 (Required) An if (condition) construct shall be followed by a compound

statement. The else keyword shall be followed by either a compound
statement, or another if statement.

Rule 6–4–2 (Required) All if … else if constructs shall be terminated with an else clause.
Rule 6–4–3 (Required) A switch statement shall be a well-formed switch statement.
Rule 6–4–4 (Required) A switch-label shall only be used when the most closely-enclosing

compound statement is the body of a switch statement.
Rule 6–4–5 (Required) An unconditional throw or break statement shall terminate every

non-empty switch-clause.
Rule	6–4–6	 (Required)	 The	final	clause	of	a	switch statement shall be the default-clause.
Rule 6–4–7 (Required) The condition of a switch statement shall not have bool type.
Rule 6–4–8 (Required) Every switch statement shall have at least one case-clause.

Iteration statements
Rule 6–5–1 (Required) A for loop shall contain a single loop-counter which shall not have

floating	type.
Rule 6–5–2 (Required) If loop-counter	is	not	modified	by	-- or ++, then, within condition,

the loop-counter shall only be used as an operand to <=, <, > or >=.
Rule 6–5–3 (Required) The loop-counter	 shall	 not	 be	 modified	 within	 condition or

statement.
Rule 6–5–4 (Required) The loop-counter	shall	be	modified	by	one	of:	--, ++, -=n, or +=n;

where n remains constant for the duration of the loop.
Rule 6–5–5 (Required) A loop-control-variable other than the loop-counter shall not be

modified	within	condition or expression.
Rule 6–5–6 (Required) A loop-control-variable other than the loop-counter which is

modified	in	statement shall have type bool.

Jump statements
Rule 6–6–1 (Required) Any label referenced by a goto statement shall be declared in the

same block, or in a block enclosing the goto statement.

Appendix A (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

183

Rule 6–6–2 (Required) The goto statement shall jump to a label declared later in the same
function body.

Rule 6–6–3 (Required) The continue statement shall only be used within a well-formed for
loop.

Rule 6–6–4 (Required) For any iteration statement there shall be no more than one break or
goto statement used for loop termination.

Rule 6–6–5 (Required) A function shall have a single point of exit at the end of the
function.

Specifiers
Rule	7–1–1	 (Required)		 A	variable	which	is	not	modified	shall	be	const	qualified.
Rule 7–1–2 (Required) A pointer or reference parameter in a function shall be declared as

pointer to const or reference to const if the corresponding object is
not	modified.

Enumeration declarations
Rule 7–2–1 (Required) An expression with enum underlying type shall only have values

corresponding to the enumerators of the enumeration.

Namespaces
Rule 7–3–1 (Required) The global namespace shall only contain main, namespace

declarations and extern "C" declarations.
Rule	7–3–2	 (Required)	 The	identifier	main shall not be used for a function other than the

global function main.
Rule 7–3–3 (Required) There shall be no unnamed namespaces in header files.
Rule 7–3–4 (Required) using-directives shall not be used.
Rule	7–3–5	 (Required)		 Multiple	declarations	for	an	identifier	in	the	same	namespace	shall	

not straddle a using-declaration	for	that	identifier.
Rule 7–3–6 (Required) using-directives and using-declarations (excluding class scope

or function scope using-declarations) shall not be used in header
files.

The asm declaration
Rule 7–4–1 (Document) All usage of assembler shall be documented.
Rule 7–4–2 (Required) Assembler instructions shall only be introduced using the asm

declaration.
Rule 7–4–3 (Required) Assembly language shall be encapsulated and isolated.

Linkage specifications
Rule 7–5–1 (Required) A function shall not return a reference or a pointer to an automatic

variable	(including	parameters),	defined	within	the	function.

Appendix A (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

184

Rule 7–5–2 (Required) The address of an object with automatic storage shall not be assigned
to	another	object	that	may	persist	after	the	first	object	has	ceased	to	
exist.

Rule 7–5–3 (Required) A function shall not return a reference or a pointer to a parameter
that is passed by reference or const reference.

Rule 7–5–4 (Advisory) Functions should not call themselves, either directly or indirectly.

Declarators — General
Rule 8–0–1 (Required) An init-declarator-list or a member-declarator-list shall consist of a

single init-declarator or member-declarator respectively.

Meaning of declarators
Rule 8–3–1 (Required) Parameters in an overriding virtual function shall either use the

same default arguments as the function they override, or else shall
not specify any default arguments.

Function definitions
Rule	8–4–1	 (Required)	 Functions	shall	not	be	defined	using	the	ellipsis	notation.
Rule	8–4–2	 (Required)	 The	 identifiers	 used	 for	 the	 parameters	 in	 a	 re-declaration	 of	 a	

function shall be identical to those in the declaration.
Rule 8–4–3 (Required) All exit paths from a function with non-void return type shall have

an explicit return statement with an expression.
Rule	8–4–4	 (Required)	 A	function	 identifier	shall	either	be	used	 to	call	 the	 function	or	 it	

shall be preceded by &.

Declarators — Initializers
Rule	8–5–1	 (Required)	 All	variables	shall	have	a	defined	value	before	they	are	used.
Rule 8–5–2 (Required) Braces shall be used to indicate and match the structure in the non-

zero initialization of arrays and structures.
Rule 8–5–3 (Required) In an enumerator list, the = construct shall not be used to explicitly

initialize	members	other	than	the	first,	unless	all	items	are	explicitly	
initialized.

Member functions
Rule 9–3–1 (Required) const member functions shall not return non-const pointers or

references to class-data.
Rule 9–3–2 (Required) Member functions shall not return non-const handles to class-data.
Rule 9–3–3 (Required) If a member function can be made static then it shall be made static,

otherwise if it can be made const then it shall be made const.

Unions
Rule 9–5–1 (Required) Unions shall not be used.

Appendix A (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

185

Bit-fields
Rule	9–6–1	 (Document)	 When	 the	 absolute	 positioning	 of	 bits	 representing	 a	 bit-field	

is	 required,	 then	 the	 behaviour	 and	 packing	 of	 bit-fields	 shall	 be	
documented.

Rule	9–6–2	 (Required)	 Bit-fields	shall	be	either	bool type or an explicitly unsigned or signed
integral type.

Rule	9–6–3	 (Required)	 Bit-fields	shall	not	have	enum type.
Rule	9–6–4	 (Required)	 Named	 bit-fields	with	 signed integer type shall have a length of

more than one bit.

Multiple base classes
Rule 10–1–1 (Advisory) Classes should not be derived from virtual bases.
Rule 10–1–2 (Required) A base class shall only be declared virtual if it is used in a diamond

hierarchy.
Rule 10–1–3 (Required) An accessible base class shall not be both virtual and non-virtual in

the same hierarchy.

Member name lookup
Rule 10–2–1 (Advisory) All accessible entity names within a multiple inheritance hierarchy

should be unique.

Virtual functions
Rule	10–3–1	 (Required)		 There	shall	be	no	more	than	one	definition	of	each	virtual	function	

on each path through the inheritance hierarchy.
Rule 10–3–2 (Required) Each overriding virtual function shall be declared with the virtual

keyword.
Rule 10–3–3 (Required) A virtual function shall only be overridden by a pure virtual function

if it is itself declared as pure virtual.

Member access control — General
Rule 11–0–1 (Required) Member data in non-POD class types shall be private.

Constructors
Rule 12–1–1 (Required) An object’s dynamic type shall not be used from the body of its

constructor or destructor.
Rule 12–1–2 (Advisory) All constructors of a class should explicitly call a constructor for all

of its immediate base classes and all virtual base classes.
Rule 12–1–3 (Required) All constructors that are callable with a single argument of

fundamental type shall be declared explicit.

Appendix A (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

186

Copying class objects
Rule 12–8–1 (Required) A copy constructor shall only initialize its base classes and the non-

static members of the class of which it is a member.
Rule 12–8–2 (Required) The copy assignment operator shall be declared protected or private

in an abstract class.

Template declarations
Rule 14–5–1 (Required) A non-member generic function shall only be declared in a namespace

that is not an associated namespace.
Rule 14–5–2 (Required) A copy constructor shall be declared when there is a template

constructor with a single parameter that is a generic parameter.
Rule 14–5–3 (Required) A copy assignment operator shall be declared when there is a

template assignment operator with a parameter that is a generic
parameter.

Name resolution
Rule 14–6–1 (Required) In a class template with a dependent base, any name that may be

found in that dependent base shall be referred to using a qualified-id
or this->

Rule 14–6–2 (Required) The function chosen by overload resolution shall resolve to a
function declared previously in the translation unit.

Template instantiation and specialization
Rule 14–7–1 (Required) All class templates, function templates, class template member

functions and class template static members shall be instantiated at
least once.

Rule 14–7–2 (Required) For any given template specialization, an explicit instantiation of
the template with the template-arguments used in the specialization
shall not render the program ill-formed.

Rule 14–7–3 (Required) All partial and explicit specializations for a template shall be declared
in	the	same	file	as	the	declaration	of	their	primary template.

Function template specialization
Rule 14–8–1 (Required) Overloaded function templates shall not be explicitly specialized.
Rule 14–8–2 (Advisory) The viable function set for a function call should either contain no

function specializations, or only contain function specializations.

Exception handling — General
Rule 15–0–1 (Document) Exceptions shall only be used for error handling.
Rule 15–0–2 (Advisory) An exception object should not have pointer type.
Rule 15–0–3 (Required) Control shall not be transferred into a try or catch block using a goto

or a switch statement.

Appendix A (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

187

Throwing an exception
Rule 15–1–1 (Required) The assignment-expression of a throw statement shall not itself

cause an exception to be thrown.
Rule 15–1–2 (Required) NULL shall not be thrown explicitly.
Rule 15–1–3 (Required) An empty throw (throw;) shall only be used in the compound-

statement of a catch handler.

Handling an exception
Rule 15–3–1 (Required) Exceptions shall be raised only after start-up and before termination

of the program.
Rule 15–3–2 (Advisory) There should be at least one exception handler to catch all otherwise

unhandled exceptions
Rule 15–3–3 (Required) Handlers of a function-try-block implementation of a class constructor

or destructor shall not reference non-static members from this class
or its bases.

Rule 15–3–4 (Required) Each exception explicitly thrown in the code shall have a handler of
a compatible type in all call paths that could lead to that point.

Rule 15–3–5 (Required) A class type exception shall always be caught by reference.
Rule 15–3–6 (Required) Where multiple handlers are provided in a single try-catch statement

or function-try-block for a derived class and some or all of its bases,
the handlers shall be ordered most-derived to base class.

Rule 15–3–7 (Required) Where multiple handlers are provided in a single try-catch statement
or function-try-block, any ellipsis (catch-all) handler shall occur
last.

Exception specifications
Rule 15–4–1 (Required) If a function is declared with an exception-specification, then all

declarations of the same function (in other translation units) shall be
declared with the same set of type-ids.

Exception handling — Special functions
Rule 15–5–1 (Required) A class destructor shall not exit with an exception.
Rule 15–5–2 (Required) Where a function’s declaration includes an exception-specification,

the function shall only be capable of throwing exceptions of the
indicated type(s).

Rule 15–5–3 (Required) The terminate() function shall not be called implicitly.

Preprocessing directives — General
Rule 16–0–1 (Required) #include	 directives	 in	 a	 file	 shall	 only	 be	 preceded	 by	 other	

preprocessor directives or comments.

Appendix A (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

188

Rule 16–0–2 (Required) Macros shall only be #define’d or #undef’d in the global
namespace.

Rule 16–0–3 (Required) #undef shall not be used.
Rule	16–0–4	 (Required)	 Function-like	macros	shall	not	be	defined.
Rule 16–0–5 (Required) Arguments to a function-like macro shall not contain tokens that

look like preprocessing directives.
Rule	16–0–6	 (Required)	 In	 the	 definition	 of	 a	 function-like	 macro,	 each	 instance	 of	 a	

parameter shall be enclosed in parentheses, unless it is used as the
operand of # or ##.

Rule	16–0–7	 (Required)	 Undefined	 macro	 identifiers	 shall	 not	 be	 used	 in	 #if or #elif
preprocessor directives, except as operands to the defined operator.

Rule 16–0–8 (Required) If the #	 token	appears	as	 the	first	 token	on	a	 line,	 then	it	shall	be	
immediately followed by a preprocessing token.

Conditional inclusion
Rule 16–1–1 (Required) The defined preprocessor operator shall only be used in one of the

two standard forms.
Rule 16–1–2 (Required) All #else, #elif and #endif preprocessor directives shall reside in the

same	file	as	the	#if or #ifdef directive to which they are related.

Source file inclusion
Rule	16–2–1	 (Required)	 The	pre-processor	shall	only	be	used	for	file	inclusion	and	include

guards.
Rule 16–2–2 (Required) C++ macros shall only be used for: include guards,	type	qualifiers,	

or	storage	class	specifiers.
Rule 16–2–3 (Required) Include guards shall be provided.
Rule 16–2–4 (Required) The ', ", /* or // characters shall not occur in a header file name.
Rule 16–2–5 (Advisory) The \ character should not occur in a header file name.
Rule 16–2–6 (Required) The #include directive shall be followed by either a <filename> or

"filename" sequence.

Macro replacement
Rule 16–3–1 (Required) There shall be at most one occurrence of the # or ## operators in a

single	macro	definition.
Rule 16–3–2 (Advisory) The # and ## operators should not be used.

Pragma directive
Rule 16–6–1 (Document) All uses of the #pragma directive shall be documented.

Appendix A (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

189

Library introduction — General
Rule	17–0–1	 (Required)	 Reserved	 identifiers,	macros	and	 functions	 in	 the	standard	 library	

shall	not	be	defined,	redefined	or	undefined.
Rule 17–0–2 (Required) The names of standard library macros and objects shall not be

reused.
Rule 17–0–3 (Required) The names of standard library functions shall not be overridden.
Rule 17–0–4 (Document) All library code shall conform to MISRA C++.
Rule 17–0–5 (Required) The setjmp macro and the longjmp function shall not be used.

Language support library — General
Rule 18–0–1 (Required) The C library shall not be used.
Rule 18–0–2 (Required) The library functions atof, atoi and atol from library <cstdlib> shall

not be used.
Rule 18–0–3 (Required) The library functions abort, exit, getenv and system from library

<cstdlib> shall not be used.
Rule 18–0–4 (Required) The time handling functions of library <ctime> shall not be used.
Rule 18–0–5 (Required) The unbounded functions of library <cstring> shall not be used.

Language support library — Implementation properties
Rule 18–2–1 (Required) The macro offsetof shall not be used.

Language support library — Dynamic memory management
Rule 18–4–1 (Required) Dynamic heap memory allocation shall not be used.

Language support library — Other runtime support
Rule 18–7–1 (Required) The signal handling facilities of <csignal> shall not be used.

Diagnostics library — Error numbers
Rule 19–3–1 (Required) The error indicator errno shall not be used.

Input/output library — General
Rule 27–0–1 (Required) The stream input/output library <cstdio> shall not be used.

Appendix A (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

190

C++ vulnerabilitiesAppendix B:

Unlike the C Language Reference Manual [16], the C++ LRM (ISO/IEC 14882:2003 [1]) does
not	include	a	collated	list	of	the	features	of	the	language	that	are	“unspecified”,	“undefined”,	etc.	
This annex provides such a list.
The extraction of this information from the LRM was funded by the Analysis, Experimentation
and	Simulation	Domain	of	the	UK	Ministry	of	Defence	Scientific	Research	Programme,	and	is	
quoted here with permission.
Each entry in the list contains the following information:

MISRA	Id:	an	identifier	unique	to	this	document,	to	allow	easy	reference	to	particular	•	
issues.
ISO Reference: a reference into the •	 LRM, in the form X.Y(Z) being paragraph Z of
subsection Y of section X, etc..
Description:	a	brief	summary	of	the	unspecified	etc.	behaviour	described	in	the	referenced	•	
paragraph.
Category: the sort of behaviour described in the referenced paragraph (see below).•	
MISRA Guidance: which Rule(s) in this document address the described issue.•	
Source	Id:	unique	identifier	used	in	the	document	where	this	table	was	originally	published	•	
[17], to allow cross-referencing.

The categories are as follows:
Unspecified:	A	situation	where	the	implementation	will	have	to	make	some	“sensible”	•	
choice, but that choice is not predictable by the programmer, e.g. the order in which sub-
expressions are evaluated in an expression.
Undefined:		A	situation	where	the	•	 LRM can give no indication of what behaviour to expect
from a program. This behaviour may result in catastrophic failure (a “crash”) or continued
execution with some arbitrary data.
Implementation: A situation where the implementation will have to make some “sensible” •	
choice and where that choice has to be documented and be available to the programmer,
e.g. the size of integers.
Indeterminate:	A	sub-category	of	undefined	behaviour,	where	the	•	 LRM says “if condition,
the behaviour is ...” but does not say what happens if the condition is not true.
Behaviour that requires no diagnostics: A situation where the •	 LRM permits behaviour that
may	be	unexpected	or	at	odds	with	previously	defined	principles,	but	explicitly	the	LRM
does not require the programmer to be warned.

Appendix B

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

191

MISRA
Id

ISO
Reference

Description Category MISRA
Guidance

Source
Id

1 2.1(1) The	mapping	of	physical	source	file	
characters.

Implementation 3.01

2 2.1(2) A character sequence that matches a
universal-character-name is produced due
to the splicing of physical source lines in
the translation process.

Undefined 2.01

3 2.1(2) A	non-empty	source	file	does	not	end	in	
a new line character, or ends in a new
line character immediately preceded by a
backslash character.

Undefined 2.02

4 2.1(2) Use	of	an	identifier	reserved	for	C++	
implementations and standard libraries.

Behaviour that
requires no
diagnostics

5.02

5 2.1(3) Whether each non-empty sequence of
white-space characters other than new
line is retained or replaced by one space
character.

Implementation 3.02

6 2.1(4) A character sequence that matches a
universal-character-name is produced due
to token concatenation.

Undefined 2.03

7 2.1(8) Whether the source of the translational
units	containing	the	definitions	of	the	
templates for the requisite instantiations is
required to be available.

Implementation 3.03

8 2.2(3) The values of the members of the
execution character sets.

Implementation 3.04

9 2.4(2) An unmatched ' or a " character is
encountered on a logical source line during
tokenization.

Undefined 2.04

10 2.7(1) A // comment contains a form feed or
vertical-tab character and does not only
have white space characters between it and
the new-line that terminates the comment.

Behaviour that
requires no
diagnostics

5.01

11 2.8(1) The mapping of the sequences in both
forms of header-names. See 16.2(2)

Implementation 3.05

12 2.8(2) The characters ', \, ", /*, or // are
encountered between the < and >
delimiters or the characters ', \, /*, or // are
encountered between the " delimiters in the
two forms of a header name preprocessing
token.

Undefined Rule 16–2–4
Rule 16–2–5

2.05

13 2.13.1(2) An integer literal cannot be represented by
any of the allowed types.

Undefined 2.06

14 2.13.2(1) The value of a multi-character literal. Implementation 3.06

15 2.13.2(2) The value of a wide-character literal
containing multiple c-chars.

Implementation 3.07

16 2.13.2(3) The character following a backslash does
not give a valid escape sequence.

Undefined Rule 2–13–1 2.07

Appendix B (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

192

MISRA
Id

ISO
Reference

Description Category MISRA
Guidance

Source
Id

17 2.13.2(4) The value of a character literal that falls
outside	of	the	implementation	defined	
range for char or w_char.

Implementation 3.08

18 2.13.2(5) The encoding of a universal-character-
name where the execution character set has
no encoding for the character named.

Implementation 3.09

19 2.13.3(1) The	actual	value	used	for	a	floating	
literal whose value is not in the range of
representable values for its type.

Implementation 3.10

20 2.13.4(2) An attempt is made to modify a string
literal.

Undefined 2.08

21 2.13.4(2) Whether all string literals are distinct
(stored in non-overlapping objects).

Implementation 3.11

22 2.13.4(3) A narrow string literal token is adjacent to
a wide string literal token.

Undefined Rule 2–13–5 2.09

23 3.1(15) A program attempting to access the stored
value of an object through an lvalue of
other	than	one	of	the	types	specified.

Undefined 2.22

24 3.2(3) A program that does not contain exactly
one	definition	for	every	non-inline	function	
or object that is used in that program.

Behaviour that
requires no
diagnostics

Rule 3–2–1
Rule 3–2–4

5.03

25 3.2(5) The behaviour of a program if two
definitions	in	separate	translation	units	do	
not	satisfy	the	One	Definition	Rule.

Undefined Rule 3–2–1
Rule 3–2–4

2.10

26 3.3.1(1) The value used when a variable is used to
initialize itself, e.g. int x = x;

Indeterminate 4.01

27 3.3.6(1)
Item 2

A name N used in a class S does not refer
to the same declaration in its context and
when re-evaluated in the completed scope
of S.

Behaviour that
requires no
diagnostics

5.04

28 3.3.6(1)
Item 3

If reordering member declarations in a
class yields an alternative valid program
under certain conditions.

Behaviour that
requires no
diagnostics

5.05

29 3.5(10) If a given object or function can be referred
to by values of different type (after all
types adjustments)

Behaviour that
requires no
diagnostics

5.06

30 3.6.1(1) Whether a program in a freestanding
environment	is	required	to	define	a	main
function.

Implementation 3.12

31 3.6.1(1) Start-up and termination in a freestanding
environment.

Implementation 3.13

32 3.6.1(2) The type of the main function, though its
return type must be int.

Implementation Rule 7–3–2 3.14

33 3.6.1(3) The linkage of main. Implementation Rule 7–3–2 3.15

34 3.6.1(4) The library function exit is called to end a
program during the destruction of an object
with static storage duration.

Undefined 2.11

Appendix B (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

193

MISRA
Id

ISO
Reference

Description Category MISRA
Guidance

Source
Id

35 3.6.2(2) Whether an object is fully, or merely
zero-initialized when an object refers to
another object of namespace scope with
static storage duration potentially requiring
dynamic	initialization	and	defined	later	in	
the same translational unit.

Unspecified 1.01

36 3.6.2(3) Whether the dynamic initialization of an
object of namespace scope is done before
the	first	statement	of	main.

Implementation 3.16

37 3.6.3(2) A function contains a local object of static
storage duration that has been destroyed
and the function is called during the
destruction of an object with static storage
duration	and	the	flow	of	control	passes	
through	the	definition	of	the	previously	
destroyed object.

Undefined 2.12

38 3.7.3.1(2) The order, contiguity and initial value
of storage allocated by the allocation
functions.

Unspecified 1.02

39 3.7.3.1(2) The results of dereferencing a pointer
returned as a request for zero size space in
a call to an allocation function.

Undefined 2.13

40 3.7.3.2(4) Attempt to use a pointer to a deleted
object.

Undefined 2.14

41 3.8(4) The side effects of a non-trivial destructor
of an object of class type whose lifetime
has ended, but whose destructor has not
been called explicitly.

Undefined 2.15

42 3.8(5) An object will be or was of a class type
with a non-trivial destructor and the
pointer is used as the operand of a delete-
expression.

Undefined 2.16

43 3.8(5) Series of uses of a pointer to a non-
POD class type between object storage
allocation and the start of object lifetime,
and the end of object lifetime and storage
de-allocation.

Undefined 2.17

44 3.8(6) An lvalue-to-rvalue conversion is applied
to an lvalue that refers to an object whose
lifetime has not yet started but whose
storage has been allocated, or whose
lifetime has ended but whose storage has
not been reused or released.

Undefined 2.18

45 3.8(6) Series of uses of an lvalue that refers to a
non-POD class type between object storage
allocation and the start of object lifetime,
and the end of object lifetime and storage
deallocation.

Undefined 2.19

Appendix B (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

194

MISRA
Id

ISO
Reference

Description Category MISRA
Guidance

Source
Id

46 3.8(8) A program ends the lifetime of an object
of type T with static or automatic storage
duration, T has a non-trivial destructor
and an object of a different type occupies
the storage location when the implicit
destructor call takes place.

Undefined 2.20

47 3.8(9) A new object is created at the storage
location that a const object with static or
automatic storage duration occupies or, at
the storage location that such a const object
used to occupy before its lifetime ended.

Undefined 2.21

48 3.9(4) For POD types, the set of values of which
the value representation (a set of bits in
the object representation that determines a
value) is one discrete element.

Implementation Rule 9–5–1 3.17

49 3.9(5) The packing needed between sub-objects
to meet alignment requirements

Implementation Rule 9–5–1 3.18

50 3.9.1(1) Whether char is equivalent to unsigned
char or signed char.

Implementation Rule 3–9–2
Rule 5–0–11
Rule 5–0–12

3.19

51 3.9.1(2) Size of int. Implementation 3.20

52 3.9.1(5) Type of wchar_t. Implementation Rule 3–9–2 3.21

53 3.9.1(8) The	value	representation	of	floating-point	
types.

Implementation Rule 3–9–3 3.22

54 3.9.2(3) The value representation of pointer types. Implementation 3.23

55 4.1(1) An lvalue, which does not refer to an
object of type T or is uninitialized, is used
where an rvalue of type T is expected.

Undefined 2.23

56 4.7(3) The value of a signed integer type due to
the conversion from either an integer or an
enumeration type when the value cannot be
represented in the destination type.

Implementation 3.24

57 4.8(1) A	floating-point	conversion	produces	a	
result that cannot be represented in the
space provided.

Undefined 2.24

58 4.8(1) The value resulting from converting a
value	of	a	floating	point	type	to	another	
floating	point	type	that	cannot	exactly	
represent the original value.

Implementation 3.25

59 4.9(1) A	floating-integral	conversion	produces	
a result that cannot be represented in the
space provided.

Undefined Rule 5–0–5
Rule 5–0–6

2.25

60 4.9(2) The choice of either the next higher or
lower representable value when an rvalue
of an integer or enumeration type is
converted	to	an	rvalue	of	a	floating-point	
type but exact conversion is not possible.

Implementation 3.26

Appendix B (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

195

MISRA
Id

ISO
Reference

Description Category MISRA
Guidance

Source
Id

61 5(4) The order of evaluation of operands of
individual operators and sub-expressions
of individual expressions, and the order in
which side effects take place.

Unspecified Rule 5–0–1 1.03

62 5(4) An	object	is	modified	more	than	once	or	
is	modified	and	accessed	other	than	to	
determine the new value, between two
sequence points.

Undefined Rule 5–0–1 2.26

63 5(5) An arithmetic operation is invalid (such as
division or modulus by zero) or produces
a result that cannot be represented in
the	space	provided	(such	as	overflow	or	
underflow).

Undefined 2.27

64 5.1(2) Pointers are compared using an equality
operator and either is a pointer to a virtual
member function.

Unspecified 1.14

65 5.2.2(1) A function is called through an expression
whose function type has a language linkage
that is different from the language linkage
of the function type of the called function’s
definition.

Undefined 2.28

66 5.2.2(7) An argument with no parameter, after
standard conversions, has a non-POD class
type.

Undefined Rule 8–4–1 2.29

67 5.2.2(8) The order of evaluation of arguments in a
function call and the order of evaluation
of	the	postfix	expression	and	the	argument	
expression list.

Unspecified 1.04

68 5.2.8(1) Whether or not the destructor is called
for the type_info object at the end of the
program.

Unspecified 1.05

69 5.2.8(1) The class (name) derived from std::type_
info of an lvalue of dynamic type
constname, that is the result of a typeid
expression.

Implementation 3.27

70 5.2.9(5) A static_cast is used to cast an lvalue of
class type to a non-derived class.

Undefined Rule 5–2–2 2.30

71 5.2.9(7) An integer type is explicitly converted to
an enumeration type but the integral value
is not within the range of the enumeration
values

Unspecified 1.06

72 5.2.9(8) A static_cast is used to cast a pointer of
class type to a pointer from a non-derived
class.

Undefined Rule 5–2–2 2.31

73 5.2.9(9) A static_cast is used to cast a pointer to a
class member to a pointer to a member of a
non-derived class

Undefined 2.32

74 5.2.10(3) The mapping performed by reinterpret_
cast.

Implementation 3.28

Appendix B (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

196

MISRA
Id

ISO
Reference

Description Category MISRA
Guidance

Source
Id

75 5.2.10(4) The mapping function used to explicitly
converting a pointer to any integral type
large enough to hold it.

Implementation Rule 5–2–9 3.29

76 5.2.10(5) Mappings between pointers and integers
other than when a value of integral or
enumeration type is explicitly converted
into a pointer or when a pointer is
converted	to	an	integer	of	sufficient	size	
and back to the same pointer type.

Implementation Rule 5–2–9 3.30

77 5.2.10(6) A pointer to a function is explicitly
converted to a function of a different type
using reinterpret_cast.

Unspecified Rule 5–2–6 1.07

78 5.2.10(6) A pointer to a function is converted by
reinterpret_cast to point to a function of a
different type and used to call a function
of a type not compatible with the original
type.

Undefined Rule 5–2–6 2.33

79 5.2.10(7) A pointer to an object is explicitly
converted to a pointer to an object of a
different type using reinterpret_cast.

Unspecified Rule 5–2–7
Rule 5–2–8

1.08

80 5.2.10(9) A pointer to member of some type is
explicitly converted to a pointer to another
member of another type using reinterpret_
cast.

Unspecified 1.09

81 5.2.11(12) The use of values produced from
conversions between pointers and
functions, pointers and member functions
and in particular a pointer to a const
member function to a pointer to a non-
const member function.

Undefined 2.35

82 5.2.11(7) Depending on the type of object, a write
operation through the pointer, lvalue or
pointer to data member resulting from a
const_char	that	casts	away	a	const-qualifier	
may	produce	undefined	behaviour.

Undefined 2.34

83 5.3.1(4) The address of an object with incomplete
type, whose complete type declares
operator&() as a member function.

Undefined Rule 5–3–3 2.36

84 5.3.3(1) The result of sizeof applied to any
fundamental type (other than char, signed
char and unsigned char), in particular
sizeof(bool) and sizeof(wchar_t).

Implementation 3.31

85 5.3.4(15) The value of a POD object created by a
new-expression when a new-initializer is
omitted.

Indeterminate 4.02

86 5.3.4(21) The order of evaluation of the allocation
function and its arguments.

Unspecified 1.10

87 5.3.4(21) The evaluation of arguments if the
allocation function returns null or exits
using an exception.

Unspecified 1.11

Appendix B (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

197

MISRA
Id

ISO
Reference

Description Category MISRA
Guidance

Source
Id

88 5.3.4(6) The	first	array	dimension	applied	to	a	new
operator is negative.

Undefined 2.37

89 5.3.5(2) The behaviour of the delete operator on a
pointer to a non-array object or a pointer to
a sub-object representing the base class of
such an object that was not obtained from a
new operator.

Undefined 2.38

90 5.3.5(2) The value of the operand of delete is
not the pointer value that resulted from
a previous array new-expression when
deleting an array.

Undefined 2.39

91 5.3.5(3) When deleting an object and the static
type of the operand is different from its
dynamic type and either the static type is
not a base class of the operand’s dynamic
type, or the static type does not have a
virtual destructor.

Undefined 2.40

92 5.3.5(3) The dynamic type of the object to be
deleted differs from its static type when
deleting an array.

Undefined 2.41

93 5.3.5(4) The value of a pointer that refers to
deallocated storage

Indeterminate 4.03

94 5.3.5(5) The object being deleted has incomplete
class type at the point of deletion and the
complete class has a non-trivial destructor
or deallocation function.

Undefined 2.42

95 5.4(6) Whether the static_cast or reinterpret_cast
interpretation is used if either the operand
or destination type of the cast is a pointer
to incomplete class type.

Unspecified 1.12

96 5.5(4) In a pointer-to-member operation the
dynamic type of an object does not contain
the member to which the pointer refers.

Undefined 2.43

97 5.5(6) The second operand of an ->* expression is
the null pointer to a member value.

Undefined 2.44

98 5.6(4) The second operand of the / or % operators
is zero.

Undefined 2.45

99 5.6(4) The sign of the remainder using the binary
% operator unless both operands are non-
negative.

Implementation Rule 1–0–3 3.32

100 5.7(5) A pointer that does not behave like a
pointer to an element of an array object is
added to or subtracted from.

Undefined Rule 5–0–16 2.46

101 5.7(5) The resultant pointer from an addition or
subtraction to a pointer to an element of an
array which does not point within the array
(or one beyond).

Undefined Rule 5–0–16 2.47

102 5.7(6) Two pointers to elements of the same array
object are subtracted, the result does not
fit	in	the	space	provided	and	there	is	an	
arithmetic	overflow.

Undefined 2.48

Appendix B (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

198

MISRA
Id

ISO
Reference

Description Category MISRA
Guidance

Source
Id

103 5.7(6) Pointers that do not behave like pointers to
elements of the same array are subtracted.

Undefined Rule 5–0–17 2.49

104 5.7(6) The signed integral type given as a result
of the subtraction of two pointers to
elements of the same array object.

Implementation 3.33

105 5.8(1) An expression is shifted by a negative
number or by an amount greater than or
equal to the width in bits of the expression
being shifted.

Undefined Rule 5–8–1 2.50

106 5.8(3) The value given as a result of >> shift
operator where the shift-expression has a
signed type and is negative

Implementation Rule 5–0–21 3.34

107 5.9(2) Pointers are compared using a relational
operator that do not point to members of
the same object, elements of the same array
or to the same functions, etc…

Unspecified 1.13

108 5.17(8) An object is assigned to an overlapping
object.

Undefined Rule 0–2–1 2.51

109 6.6.3(2) The	effect	of	flowing	off	the	end	of	a	
function that is expected to return a value

Undefined Rule 8–4–3 2.52

110 6.7(4) Control re-enters a declaration recursively
while an object is being initialized.

Undefined 2.53

111 6.8(3) During parsing, a name in a template
parameter is bound differently than it
would be bound during a trial parse.

Behaviour that
requires no
diagnostics

5.07

112 7.1.5.1(4) An attempt is made to modify a const
object, other than any class member
declared mutable.

Undefined Rule 5–2–5 2.54

113 7.1.5.1(7) An attempt is made to refer an object
defined	with	volatile-qualified	type	through	
the use of an lvalue with non-volatile-
qualified	type.

Undefined Rule 5–2–5 2.55

114 7.1.5.2(1) Whether	bit-fields	and	objects	of	char	
type are represented as signed or unsigned
quantities.

Implementation Rule 5–0–11
Rule 5–0–12
Rule 9–6–2

3.35

115 7.2(4) The	type	of	an	uninitialized	first	
enumerator.

Unspecified 1.15

116 7.2(4) The value of an uninitialized enumerator
is not representable in the type of the
preceding enumerator.

Unspecified 1.16

117 7.2(5) The integral type used as the underlying
type for an enumeration.

Implementation 3.36

118 7.2(9) A value is not in the range of the
enumeration type to which it is explicitly
converted.

Unspecified Rule 7–2–1 1.17

119 7.3.2(4) A	namespace-name	defined	at	global	scope	
is also declared as the name of another
entity in any global scope of the program.

Behaviour that
requires no
diagnostics

5.08

120 7.4(1) The meaning of an asm declaration. Implementation Rule 7–4–1 3.37

Appendix B (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

199

MISRA
Id

ISO
Reference

Description Category MISRA
Guidance

Source
Id

121 7.5(1) Implementation	specific	properties	
associated with an entity with language
linkage

Implementation Rule 1–0–2 3.38

122 7.5(2) The meaning of the string-literal in a
linkage-specification

Implementation Rule 1–0–2 3.39

123 7.5(2) The spelling of the language’s name when
the string-literal in a linkage-specification
names a programming language

Implementation Rule 1–0–2 3.40

124 7.5(2) The semantics of a language linkage other
than C++ or C.

Implementation Rule 1–0–2 3.41

125 7.5(9) Linkage	from	C++	to	objects	defined	in	
other	languages	and	to	objects	defined	in	
C++ from other languages.

Implementation Rule 1–0–2 3.42

126 8.3.2(3) Whether a reference requires storage. Unspecified 1.18
127 8.3.2(4) Dereferencing a null pointer. Undefined 2.56
128 8.3.6(9) The order of evaluation of function

arguments.
Unspecified 1.19

129 8.5(9) The value of an object if no initializer is
specified.

Indeterminate Rule 8–5–1 4.04

130 8.5.3(8) How the reference is bound when a
reference to type “cv1 T1” is initialized by
an expression “cv2 T2”.

Implementation 3.43

131 9.2(12) The order of allocation of non-static data
members separated by an access-specifier

Unspecified 1.20

132 9.3.1(1) A member function of a class X is called
for an object that is not of type X or a type
derived from X.

Undefined 2.57

133 9.6(1) The	allocation	of	bit-fields	within	a	class. Implementation Rule 9–6–1 3.44

134 9.6(3) Whether a plain (neither explicitly signed
nor unsigned) char, short, int or long bit-
field	is	signed	or	unsigned.

Implementation Rule 9–6–2 3.46

135 9.6(4) Alignment	of	bit-fields Implementation 3.45

136 10(3) The order in which the base class
subobjects are allocated in the most
derived object

Unspecified 1.21

137 10.3(8) A virtual function declared in a class is
both	defined	and	declared	pure	in	that	
class.

Behaviour that
requires no
diagnostics

5.09

138 10.4(6) A virtual call is made from a constructor
(or destructor) of an abstract class to a pure
virtual function directly or indirectly for
the object being created (or destroyed).

Undefined Rule 12–1–1 2.58

139 11.1(2) The order of allocation of data members
with	separate	access-specifier	labels

Unspecified 1.22

Appendix B (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

200

MISRA
Id

ISO
Reference

Description Category MISRA
Guidance

Source
Id

140 12.1(15) The value of an object obtained, if during
the construction of a const object, the
object is accessed through an lvalue
not obtained from the constructor’s this
pointer.

Unspecified 1.23

141 12.2(5) The order of creation of temporary objects. Unspecified 1.24
142 12.4(12) A destructor is invoked for an object that

is not of the destructor’s class or not of a
class derived from the destructor’s class.

Undefined 2.59

143 12.4(14) A destructor is invoked for an object whose
lifetime has ended

Undefined 2.60

144 12.6.2(4) The value of a member of a class if it is not
otherwise initialized by the constructor.

Indeterminate 4.05

145 12.6.2(8) A member function (including virtual
member functions) is called for an object
under construction, or an object under
construction is used as the operand of
the typeid operator or of a dynamic_cast
performed in a ctor-initializer (or a
function called directly or indirectly from
a ctor-initializer) before all of the mem-
initializers for base classes have been
completed.

Undefined 2.61

146 12.7(1) Referring to any nonstatic member or base
class of an object of non-POD class type,
before the constructor begins execution
and	after	the	destructor	finishes	execution.

Undefined 2.62

147 12.7(2) Converting a pointer to an object of class
X to a direct or indirect base class of X,
where the construction of the object has
not started or the destruction of the object
has completed.

Undefined 2.63

148 12.7(2) Forming a pointer to (or access the value
of) a direct nonstatic member of an object,
where the construction of the object has
not started or the destruction of the object
has completed.

Undefined 2.64

149 12.7(3) The result of making a virtual call using
an explicit class member access and the
object expression refers to the object under
construction or destruction but its type is
neither the constructor or destructor’s own
class or one of its bases.

Undefined 2.65

150 12.7(4) The operand of typeid refers to an object
under construction or destruction and the
static type of the operand is neither the
constructor or destructor’s class nor one of
its bases.

Undefined 2.66

Appendix B (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

201

MISRA
Id

ISO
Reference

Description Category MISRA
Guidance

Source
Id

151 12.7(5) If the operand of the dynamic_cast refers to
the object under construction or destruction
and the static type of the operand is not a
pointer to or object of the constructor is not
a pointer to or object of the constructor or
destructor’s own class or one of its bases.

Undefined 2.67

152 12.8(13) Whether sub-objects representing virtual
base classes are assigned more than once
by	the	implicitly-defined	copy	assignment	
operator.

Unspecified 1.25

153 12.8(4) Any	use	of	a	user	defined	copy	constructor	
that matches the implicitly declared copy
constructor

Behaviour that
requires no
diagnostics

5.10

154 14(4) The linkage of a template, a template
explicit specialization or a class template
partial specialization, if it is something
other than C or C++.

Implementation 3.47

155 14(8) A template that is exported more than once
in a program.

Behaviour that
requires no
diagnostics

5.11

156 14(8) A non-exported template which is neither
defined	in	every	translation	unit	in	which	
it is implicitly instantiated nor explicitly
instantiated in some translation unit

Behaviour that
requires no
diagnostics

5.12

157 14.3.3(2) A specialization is not visible at the point
of instantiation, and it would have been
selected had it been visible.

Behaviour that
requires no
diagnostics

5.13

158 14.5.4(1) A partial specialization of a template
is	not	declared	before	its	first	use	that	
would cause implicit instantiation in any
translation unit.

Behaviour that
requires no
diagnostics

Rule 14–7–3 5.14

159 14.5.5.1(7) A program contains declarations of
function templates that are functionally
equivalent but not equivalent.

Behaviour that
requires no
diagnostics

5.15

160 14.6(7) No valid specialization can be generated
for	a	template	definition,	but	the	template	
is not instantiated.

Behaviour that
requires no
diagnostics

5.16

161 14.6.4.1(7) Two different points of instantiation give a
template specialization different meanings
according	to	the	one	definition	rule.

Behaviour that
requires no
diagnostics

Rule 14–7–3 5.17

162 14.6.4.2(1) If a function call that depends on a
template parameter would be ill-formed
or	would	find	a	better	match	had	the	
lookup within the associated namespaces
considered all the function declarations
with external linkage introduced with those
namespaces in all translation units

Undefined 2.68

163 14.7.1(14) The instantiation of a template produces
recursion	beyond	some	defined	limit

Undefined 2.69

164 14.7.1(14) The limit on the total depth of recursive
instantiation of templates

Implementation 3.48

Appendix B (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

202

MISRA
Id

ISO
Reference

Description Category MISRA
Guidance

Source
Id

165 14.7.1(5) Whether the instantiation occurs when the
overload resolution process can determine
the correct function to call without
instantiating	a	class	template	definition.

Unspecified 1.26

166 14.7.1(9) Whether an implementation implicitly
instantiates a virtual member function
of a class template if the virtual member
function would not otherwise be
instantiated.

Unspecified 1.27

167 14.7.3(6) An explicit specialization of a template
is	not	declared	before	its	first	use	in	
any translation unit that causes implicit
instantiation

Behaviour that
requires no
diagnostics

Rule 14–7–3 5.18

168 15.1(4) The way memory is allocated for the
temporary copy of an exception being
thrown

Unspecified 1.28

169 15.1(4) Deallocation of memory for a temporary
object when the last handler exits by
any means other than a throw and the
temporary object is then destroyed.

Unspecified 1.29

170 15.3(10) Referring to any non-static member or
base class of an object in the handler for
a function-try-block of a constructor or
destructor for that object.

Undefined Rule 15–3–3 2.70

171 15.3(16) Flowing off the end of a function-try-block
in a value returning function.

Undefined 2.71

172 15.3(9) Whether or not the stack is unwound
before the call to terminate(), in the case
where no matching handler is found in a
program.

Implementation Rule 15–1–3
Rule 15–3–1
Rule 15–3–2
Rule 15–3–4
Rule 15–5–1

3.49

173 15.4(2) Sets of type-ids	in	exception-specifications	
in two translation units differ.

Behaviour that
requires no
diagnostics

Rule 15–4–1 5.19

174 15.5.2(2) The object of type std::bad_exception that
is used to replace an exception thrown or
re-thrown by the unexpected() function that
the exception-specification does not allow.

Implementation 3.50

175 16.1(4) The	token	defined	is	generated	during	the	
expansion of a #if or #elif pre-processing
directive.

Undefined 2.72

176 16.1(4) The #defined pre-processing directive does
not	match	one	of	the	two	specified	forms.

Undefined Rule 16–1–1 2.73

177 16.1(4) Whether the value of an interpreted
character literal matches the value obtained
when an identical character literal occurs
in an expression.

Implementation 3.51

178 16.1(4) Whether a single-character character literal
may have a negative value.

Implementation 3.52

Appendix B (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

203

MISRA
Id

ISO
Reference

Description Category MISRA
Guidance

Source
Id

179 16.2(2) The sequence of places searched for the
header	file	specified	between	the	<	and	
> delimiters due to a #include <h-char-
sequence> new-line pre-processing
directive.

Implementation 3.53

180 16.2(2) During execution of a #include pre-
processor directive, how the places
are	searched	and	how	the	header	file	is	
identified.

Implementation 3.54

181 16.2(3) The sequence of places searched for the
header	file	specified	in	quotes	in	a	#include
"q-char-sequence" new-line pre-processing
directive.

Implementation 3.55

182 16.2(4) The #include pre-processing directive that
results after expansion does not match one
of the header name forms.

Undefined Rule 16–2–6 2.74

183 16.2(4) The method by which a sequence of pre-
processing tokens between < and > or a
pair of " characters is combined into a
single header name pre-processing token.

Implementation 3.56

184 16.2(5) The mapping between the delimited
sequence	and	the	external	source	file	name.

Implementation 3.57

185 16.2(6) The nesting limit to which an #include pre-
processing directive may appear due to the
#include	directive	of	another	file.

Implementation 3.58

186 16.3(10) A function-like macro argument consists of
no pre-processing tokens.

Undefined Rule 16–0–4 2.75

187 16.3(10) There are sequences of pre-processing
tokens within the list of function-like
macro arguments that would otherwise act
as pre-processing directive lines.

Undefined Rule 16–0–5 2.76

188 16.3.2(2) The order of evaluation of # and ##
operators.

Unspecified Rule 16–3–1
Rule 16–3–2

1.30

189 16.3.2(2) The result of the pre-processing operator #
is not a valid character string literal.

Undefined Rule 16–3–1
Rule 16–3–2

2.77

190 16.3.3(3) The order of evaluation of ## operators. Unspecified Rule 16–3–1
Rule 16–3–2

1.31

191 16.3.3(3) The result of the pre-processing
concatenation operator ## is not a valid
pre-processing token.

Undefined Rule 16–3–1
Rule 16–3–2

2.78

192 16.4(3) The	#line	pre-processing	directive	specifies	
zero or a number greater than 32767.

Undefined 2.79

193 16.4(5) The #line pre-processing directive that
results after expansion does not match one
of	the	two	well-defined	forms.

Undefined 2.80

194 16.6(1) The behaviour of the implementation due
to the #pragma pre-processing directive.

Implementation Rule 16–6–1 3.59

195 16.8(1) The date/time supplied, as a result of the
__DATE__ macro, if the date of translation
is not available.

Implementation 3.60

Appendix B (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

204

MISRA
Id

ISO
Reference

Description Category MISRA
Guidance

Source
Id

196 16.8(1) The date/time supplied, as a result of the
__TIME__ macro, if the time of translation
is not available.

Implementation 3.61

197 16.8(1) Whether __STDC__	is	predefined	and	its	
value.

Implementation 3.62

198 16.8(3) One	of	the	following	identifiers	is	
the subject of a #define or a #undef
pre-processing directive. __LINE__,
__FILE__, __DATE__, __TIME__,
__STDC__, __cplusplus,	or	the	identifier	
defined.

Undefined Rule 17–0–1 2.81

Appendix B (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

205

GlossaryAppendix C:

ADL

ADL is an abbreviation for argument-dependent lookup.

Aggregate

An array is an aggregate. A class is an aggregate if all the following apply:
It has no user declared constructors;•	
It has no private or protected non-static data members;•	
It has no base classes;•	
It has no virtual functions.•	

Associated namespace

An associated namespace is an additional namespace that is searched during argument-dependent
lookup. The set of associated namespaces	is	described	in	ISO/IEC	14882:2003	[1]	§3.4.2(2).

Callback

A callback is a function that is called indirectly via a function pointer or a handle.

Class-data

The class-data for a class is all non-static member data and any resources acquired in the constructor
or released in the destructor.

Code

Code consists of everything within a translation unit that is not excluded by conditional compilation.
Note that code	also	includes	any	declarations	and	definitions	that	are	introduced	by	the	compiler	
(e.g. default constructors, etc).

Compatible types

Compatible types are types that, for the purpose of declaration matching, are treated as the same.
Two identical types are compatible but two compatible types need not be identical. For example,
short int and short are compatible.

Dataflow anomaly

The state of a variable at a point in a program can be described using the following terms:
Undefined	(U):	The	value	of	the	variable	is	indeterminate;•	
Referenced (R): The variable is used in some way (e.g. in an expression);•	
Defined	(D):	The	variable	is	explicitly	initialised	or	assigned	a	value.•	

Given the above, the following dataflow anomalies	can	be	defined:
UR dataflow anomaly•	 :	Variable	not	assigned	a	value	before	the	specified	use;
DU dataflow anomaly•	 : Variable is assigned a value that is never subsequently used;
DD dataflow anomaly•	 : Variable is assigned a value twice with no intermediate use.

DD dataflow anomaly

See dataflow anomaly.

Appendix C

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

206

Dead code

Dead code (also known as redundant code) consists of evaluated expressions whose removal
would not affect the output of a program.

Declaration

For the purposes of this standard, in headline rule text a declaration	is	the	first	introduction	of	
a name into a translation unit. All subsequent “declarations” (as per ISO/IEC 14882:2003 [1]
§3.2(1))	are	re-declarations.
A definition is also always either a declaration or re-declaration, but with the characteristics
described	in	ISO/IEC	14882:2003	[1]	§3.2(2).

Definition

See Declaration.

DU dataflow anomaly

See dataflow anomaly.

Function set

A function set is:
A function;•	
A function overload set.•	

Generic function

A function template or operator template that can be called without explicit template arguments
and whose parameters are of built-in type or which are generic parameters. For example:

template <typename T> void f(T const & t);

Generic parameter

A template type parameter T is a generic parameter if, in the function declaration, it has the
(possibly cv-qualified) form T &[opt]

.
For example:

T const & t
T
T volatile

Handle

A handle is a variable that refers to a resource.

Header file

A header file	is	any	file	that	is	the	subject	of	a	#include	directive.	Note	that	the	filename	extension	
is	not	significant.

Include guard

An include guard is a construct used to avoid the problems associated with multiple inclusion
when dealing with the #include directive.

Appendix C (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

207

Infeasible path

Infeasible paths occur where there is a syntactic path to a code fragment, but the semantics ensure
that	the	control	flow	path	will	not	be	executed.	Example:

if (u32 < 0)
{
 // An unsigned value will never be negative,
 // so code in this block will never be executed.
}

LRM

LRM is an abbreviation for Language Reference Manual.

NDR

NDR is an abbreviation for No Diagnostic Required.

ODR

ODR	is	an	abbreviation	for	the	One	Definition	Rule.

POD

POD is an abbreviation for Plain Old Data.

A struct or union is POD if all the following apply:
It is an aggregate;•	
It has no non-static members with type non-POD (or array of non-POD);•	
It has no non-static members with type reference;•	
It has no user declared copy assignment operator;•	
It has no user declared destructor.•	

A class is a POD if it is either a struct or a union that is a POD.

Project

A project consists of the code from the set of translation units used to build the application.

Primary template

The primary template	is	the	first	declaration	of	a	template.

Redundant code

See Dead code.

Re-declaration

See Declaration.

Resource

A resource is an entity whose lifetime is controlled explicitly by the developer. The developer is
therefore responsible for acquiring and relinquishing the resource.

Appendix C (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

208

Unreachable code

Unreachable code	is	code	to	which	there	is	no	syntactic	(control	flow)	path,	e.g.	a	function	which	
is never called, either directly or indirectly.

UR dataflow anomaly

See dataflow anomaly.

Use / used / using

An object is used if it is:
The subject of a cast;•	
Explicitly initialized at declaration time;•	
An operand in an expression;•	
Referenced.•	

Unique

Within the rules, unique means that the associated text/rule applies across the whole project.

Unused

A type or object is unused if it is not used.

Appendix C (continued)

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

ISBN 978-1-906400-03-3 paperback
ISBN 978-1-906400-04-0 PDF

Licensed to: Insigma Rail Transport. Engineering Co.
He Yulin. 12 Oct 2010. Copy 1 of 1

